README.md 3.96 KB
Newer Older
yangql's avatar
yangql committed
1
# BERT
yangql's avatar
yangql committed
2

yangql's avatar
yangql committed
3
4
5
## 论文
`Bidirectional Encoder Representation from Transformers`
- https://browse.arxiv.org/pdf/1810.04805.pdf
yangql's avatar
yangql committed
6
7
8
9

## 模型结构
以往的预训练模型的结构会受到单向语言模型(从左到右或者从右到左)的限制,因而也限制了模型的表征能力,使其只能获取单方向的上下文信息。而BERT利用MLM进行预训练并且采用深层的双向Transformer组件(单向的Transformer一般被称为Transformer decoder,其每一个token(符号)只会attend到目前往左的token。而双向的Transformer则被称为Transformer encoder,其每一个token会attend到所有的token)来构建整个模型,因此最终生成能融合左右上下文信息的深层双向语言表征。

yangql's avatar
yangql committed
10
11
12
13
14
## 算法原理
BERT的全称为Bidirectional Encoder Representation from Transformers,是一个预训练的语言表征模型。它强调了不再像以往一样采用传统的单向语言模型或者把两个单向语言模型进行浅层拼接的方法进行预训练,而是采用新的masked language model(MLM),以致能生成深度的双向语言表征。

## 推理
### Python版本推理
yangql's avatar
yangql committed
15
本次采用经典的Bert模型完成问题回答任务,模型和分词文件下载链接:https://pan.baidu.com/s/1yc30IzM4ocOpTpfFuUMR0w, 提取码:8f1a, 将bertsquad-10.onnx文件和uncased_L-12_H-768_A-12分词文件保存在Resource/文件夹下。下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。
yangql's avatar
yangql committed
16
#### 下载镜像
yangql's avatar
yangql committed
17
18
19
20
在光源中下载镜像: 
```python
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```
yangql's avatar
yangql committed
21
#### 设置Python环境变量
yangql's avatar
yangql committed
22
23
24
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
yangql's avatar
yangql committed
25
#### 安装依赖
yangql's avatar
yangql committed
26
27
28
29
30
31
32
33
34
35
```python
# 进入bert ort工程根目录
cd <path_to_bert_ort> 

# 进入示例程序目录
cd Python/

# 安装依赖
pip install -r requirements.txt
```
yangql's avatar
yangql committed
36
#### 运行示例
yangql's avatar
yangql committed
37
38
39
40
41
42
43
44
45
46
47
```python
python bert.py
```
输出结果为:
```
“1”:"open-source exascale-class platform for accelerated computing",
"2":"(Tensorflow / PyTorch)",
"3":"scale"
```
输出结果中,问题id对应预测概率值最大的答案。

yangql's avatar
yangql committed
48
### C++版本推理
yangql's avatar
yangql committed
49
本次采用经典的Bert模型完成问题回答任务,模型和分词文件下载链接:https://pan.baidu.com/s/1yc30IzM4ocOpTpfFuUMR0w, 提取码:8f1a, 将bertsquad-10.onnx文件和uncased_L-12_H-768_A-12分词文件保存在Resource/文件夹下。下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
yangql's avatar
yangql committed
50
#### 下载镜像
yangql's avatar
yangql committed
51
52
53
54
在光源中下载镜像: 
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```
yangql's avatar
yangql committed
55
#### 构建工程
yangql's avatar
yangql committed
56
57
58
```
rbuild build -d depend
```
yangql's avatar
yangql committed
59
#### 设置环境变量
yangql's avatar
yangql committed
60
61
62
63
64
65
66
67
68
将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:
```
export LD_LIBRARY_PATH=<path_to_bert_ort>/depend/lib64/:$LD_LIBRARY_PATH
```
然后执行:
```
source ~/.bashrc
source /opt/dtk/env.sh
```
yangql's avatar
yangql committed
69
#### 运行示例
yangql's avatar
yangql committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
```python
# 进入bert ort工程根目录
cd <path_to_bert_ort> 

# 进入build目录
cd build/

# 执行示例程序
./Bert
```
如下所示,在当前界面根据提示输入问题,得到预测答案。
```
question:What is ROCm?
answer:open-source exascale-class platform for accelerated computing
question:Which frameworks does ROCmsupport?
answer:tensorflow / pytorch
question:What is ROCm built for?
answer:scale
```
yangql's avatar
yangql committed
89

yangql's avatar
yangql committed
90
91
92
93
94
## 应用场景
### 算法类别
参考此分类方法(上传时请去除参考图片):
![img](./doc/classes.png)
`此处填算法类别`
yangql's avatar
yangql committed
95

yangql's avatar
yangql committed
96
97
### 热点应用行业
应用行业的填写需要做大量调研,从而为使用者提供专业、全面的推荐,除特殊算法,通常推荐数量>=3。
yangql's avatar
yangql committed
98
99
100
101

## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/bert_ort

yangql's avatar
yangql committed
102
## 参考资料
yangql's avatar
yangql committed
103

yangql's avatar
yangql committed
104
https://github.com/ROCmSoftwarePlatform/onnxruntime/blob/81120e9e8b377567daa00d55614c902f35b2ae8f/onnxruntime/python/tools/transformers/onnx_model_bert.py