run_alphafold.py 19.3 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Full AlphaFold protein structure prediction script."""
16
import enum
Augustin-Zidek's avatar
Augustin-Zidek committed
17
18
19
20
21
import json
import os
import pathlib
import pickle
import random
22
import shutil
Augustin-Zidek's avatar
Augustin-Zidek committed
23
24
import sys
import time
25
from typing import Any, Dict, Mapping, Union
Augustin-Zidek's avatar
Augustin-Zidek committed
26
27
28
29
30

from absl import app
from absl import flags
from absl import logging
from alphafold.common import protein
31
from alphafold.common import residue_constants
Augustin-Zidek's avatar
Augustin-Zidek committed
32
from alphafold.data import pipeline
33
from alphafold.data import pipeline_multimer
Augustin-Zidek's avatar
Augustin-Zidek committed
34
from alphafold.data import templates
35
36
from alphafold.data.tools import hhsearch
from alphafold.data.tools import hmmsearch
Augustin-Zidek's avatar
Augustin-Zidek committed
37
from alphafold.model import config
Augustin Zidek's avatar
Augustin Zidek committed
38
from alphafold.model import data
Augustin-Zidek's avatar
Augustin-Zidek committed
39
40
from alphafold.model import model
from alphafold.relax import relax
41
import jax.numpy as jnp
Tom Ward's avatar
Tom Ward committed
42
import numpy as np
43

Augustin-Zidek's avatar
Augustin-Zidek committed
44
45
# Internal import (7716).

46
47
logging.set_verbosity(logging.INFO)

48
49
50
51
52
53
54

@enum.unique
class ModelsToRelax(enum.Enum):
  ALL = 0
  BEST = 1
  NONE = 2

55
56
57
58
59
60
flags.DEFINE_list(
    'fasta_paths', None, 'Paths to FASTA files, each containing a prediction '
    'target that will be folded one after another. If a FASTA file contains '
    'multiple sequences, then it will be folded as a multimer. Paths should be '
    'separated by commas. All FASTA paths must have a unique basename as the '
    'basename is used to name the output directories for each prediction.')
61
62

flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
zhuwenwen's avatar
zhuwenwen committed
63
flags.DEFINE_list('model_names', None, 'Names of models to use.')
Augustin-Zidek's avatar
Augustin-Zidek committed
64
65
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
                    'store the results.')
66
flags.DEFINE_string('jackhmmer_binary_path', shutil.which('jackhmmer'),
Augustin-Zidek's avatar
Augustin-Zidek committed
67
                    'Path to the JackHMMER executable.')
68
flags.DEFINE_string('hhblits_binary_path', shutil.which('hhblits'),
Augustin-Zidek's avatar
Augustin-Zidek committed
69
                    'Path to the HHblits executable.')
70
flags.DEFINE_string('hhsearch_binary_path', shutil.which('hhsearch'),
Augustin-Zidek's avatar
Augustin-Zidek committed
71
                    'Path to the HHsearch executable.')
72
73
74
75
76
flags.DEFINE_string('hmmsearch_binary_path', shutil.which('hmmsearch'),
                    'Path to the hmmsearch executable.')
flags.DEFINE_string('hmmbuild_binary_path', shutil.which('hmmbuild'),
                    'Path to the hmmbuild executable.')
flags.DEFINE_string('kalign_binary_path', shutil.which('kalign'),
Augustin-Zidek's avatar
Augustin-Zidek committed
77
78
79
80
81
82
83
                    'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
                    'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
                    'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
                    'database for use by HHblits.')
84
85
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
                    'version of BFD used with the "reduced_dbs" preset.')
Augustin Zidek's avatar
Augustin Zidek committed
86
flags.DEFINE_string('uniref30_database_path', None, 'Path to the UniRef30 '
Augustin-Zidek's avatar
Augustin-Zidek committed
87
                    'database for use by HHblits.')
88
89
flags.DEFINE_string('uniprot_database_path', None, 'Path to the Uniprot '
                    'database for use by JackHMMer.')
Augustin-Zidek's avatar
Augustin-Zidek committed
90
91
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
                    'database for use by HHsearch.')
92
93
flags.DEFINE_string('pdb_seqres_database_path', None, 'Path to the PDB '
                    'seqres database for use by hmmsearch.')
Augustin-Zidek's avatar
Augustin-Zidek committed
94
95
96
97
98
99
100
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
                    'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
                    'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
                    'mapping from obsolete PDB IDs to the PDB IDs of their '
                    'replacements.')
101
102
103
104
105
106
107
108
109
110
flags.DEFINE_enum('db_preset', 'full_dbs',
                  ['full_dbs', 'reduced_dbs'],
                  'Choose preset MSA database configuration - '
                  'smaller genetic database config (reduced_dbs) or '
                  'full genetic database config  (full_dbs)')
flags.DEFINE_enum('model_preset', 'monomer',
                  ['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'],
                  'Choose preset model configuration - the monomer model, '
                  'the monomer model with extra ensembling, monomer model with '
                  'pTM head, or multimer model')
Augustin-Zidek's avatar
Augustin-Zidek committed
111
112
113
114
115
116
117
118
119
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
                     'to obtain a timing that excludes the compilation time, '
                     'which should be more indicative of the time required for '
                     'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
                     'pipeline. By default, this is randomly generated. Note '
                     'that even if this is set, Alphafold may still not be '
                     'deterministic, because processes like GPU inference are '
                     'nondeterministic.')
120
121
122
123
124
flags.DEFINE_integer('num_multimer_predictions_per_model', 5, 'How many '
                     'predictions (each with a different random seed) will be '
                     'generated per model. E.g. if this is 2 and there are 5 '
                     'models then there will be 10 predictions per input. '
                     'Note: this FLAG only applies if model_preset=multimer')
125
flags.DEFINE_boolean('use_precomputed_msas', False, 'Whether to read MSAs that '
Augustin Zidek's avatar
Augustin Zidek committed
126
127
128
129
130
131
                     'have been written to disk instead of running the MSA '
                     'tools. The MSA files are looked up in the output '
                     'directory, so it must stay the same between multiple '
                     'runs that are to reuse the MSAs. WARNING: This will not '
                     'check if the sequence, database or configuration have '
                     'changed.')
132
133
134
135
136
137
138
139
140
flags.DEFINE_enum_class('models_to_relax', ModelsToRelax.BEST, ModelsToRelax,
                        'The models to run the final relaxation step on. '
                        'If `all`, all models are relaxed, which may be time '
                        'consuming. If `best`, only the most confident model '
                        'is relaxed. If `none`, relaxation is not run. Turning '
                        'off relaxation might result in predictions with '
                        'distracting stereochemical violations but might help '
                        'in case you are having issues with the relaxation '
                        'stage.')
Augustin Zidek's avatar
Augustin Zidek committed
141
142
143
144
flags.DEFINE_boolean('use_gpu_relax', None, 'Whether to relax on GPU. '
                     'Relax on GPU can be much faster than CPU, so it is '
                     'recommended to enable if possible. GPUs must be available'
                     ' if this setting is enabled.')
145

Augustin-Zidek's avatar
Augustin-Zidek committed
146
147
148
149
150
151
152
FLAGS = flags.FLAGS

MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
153
RELAX_MAX_OUTER_ITERATIONS = 3
Augustin-Zidek's avatar
Augustin-Zidek committed
154
155


156
157
158
def _check_flag(flag_name: str,
                other_flag_name: str,
                should_be_set: bool):
159
160
  if should_be_set != bool(FLAGS[flag_name].value):
    verb = 'be' if should_be_set else 'not be'
161
162
    raise ValueError(f'{flag_name} must {verb} set when running with '
                     f'"--{other_flag_name}={FLAGS[other_flag_name].value}".')
163
164


Hamish Tomlinson's avatar
Hamish Tomlinson committed
165
def _jnp_to_np(output: Dict[str, Any]) -> Dict[str, Any]:
166
167
168
169
170
171
172
173
174
  """Recursively changes jax arrays to numpy arrays."""
  for k, v in output.items():
    if isinstance(v, dict):
      output[k] = _jnp_to_np(v)
    elif isinstance(v, jnp.ndarray):
      output[k] = np.array(v)
  return output


Augustin-Zidek's avatar
Augustin-Zidek committed
175
176
177
178
def predict_structure(
    fasta_path: str,
    fasta_name: str,
    output_dir_base: str,
179
    data_pipeline: Union[pipeline.DataPipeline, pipeline_multimer.DataPipeline],
Augustin-Zidek's avatar
Augustin-Zidek committed
180
181
182
    model_runners: Dict[str, model.RunModel],
    amber_relaxer: relax.AmberRelaxation,
    benchmark: bool,
183
184
    random_seed: int,
    models_to_relax: ModelsToRelax):
Augustin-Zidek's avatar
Augustin-Zidek committed
185
  """Predicts structure using AlphaFold for the given sequence."""
186
  logging.info('Predicting %s', fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
187
188
189
190
191
192
193
194
195
196
  timings = {}
  output_dir = os.path.join(output_dir_base, fasta_name)
  if not os.path.exists(output_dir):
    os.makedirs(output_dir)
  msa_output_dir = os.path.join(output_dir, 'msas')
  if not os.path.exists(msa_output_dir):
    os.makedirs(msa_output_dir)

  # Get features.
  t_0 = time.time()
197
198
199
  feature_dict = data_pipeline.process(
      input_fasta_path=fasta_path,
      msa_output_dir=msa_output_dir)
Augustin-Zidek's avatar
Augustin-Zidek committed
200
201
202
203
204
205
206
  timings['features'] = time.time() - t_0

  # Write out features as a pickled dictionary.
  features_output_path = os.path.join(output_dir, 'features.pkl')
  with open(features_output_path, 'wb') as f:
    pickle.dump(feature_dict, f, protocol=4)

207
  unrelaxed_pdbs = {}
208
  unrelaxed_proteins = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
209
  relaxed_pdbs = {}
Augustin Zidek's avatar
Augustin Zidek committed
210
  relax_metrics = {}
211
  ranking_confidences = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
212
213

  # Run the models.
214
215
216
217
  num_models = len(model_runners)
  for model_index, (model_name, model_runner) in enumerate(
      model_runners.items()):
    logging.info('Running model %s on %s', model_name, fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
218
    t_0 = time.time()
219
    model_random_seed = model_index + random_seed * num_models
Augustin-Zidek's avatar
Augustin-Zidek committed
220
    processed_feature_dict = model_runner.process_features(
221
        feature_dict, random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
222
223
224
    timings[f'process_features_{model_name}'] = time.time() - t_0

    t_0 = time.time()
225
226
    prediction_result = model_runner.predict(processed_feature_dict,
                                             random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
227
228
229
    t_diff = time.time() - t_0
    timings[f'predict_and_compile_{model_name}'] = t_diff
    logging.info(
230
231
        'Total JAX model %s on %s predict time (includes compilation time, see --benchmark): %.1fs',
        model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
232
233
234

    if benchmark:
      t_0 = time.time()
235
236
237
238
239
240
241
      model_runner.predict(processed_feature_dict,
                           random_seed=model_random_seed)
      t_diff = time.time() - t_0
      timings[f'predict_benchmark_{model_name}'] = t_diff
      logging.info(
          'Total JAX model %s on %s predict time (excludes compilation time): %.1fs',
          model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
242

243
    plddt = prediction_result['plddt']
244
    ranking_confidences[model_name] = prediction_result['ranking_confidence']
Augustin-Zidek's avatar
Augustin-Zidek committed
245

246
247
248
    # Remove jax dependency from results.
    np_prediction_result = _jnp_to_np(dict(prediction_result))

Augustin-Zidek's avatar
Augustin-Zidek committed
249
250
251
    # Save the model outputs.
    result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
    with open(result_output_path, 'wb') as f:
252
      pickle.dump(np_prediction_result, f, protocol=4)
Augustin-Zidek's avatar
Augustin-Zidek committed
253

254
255
256
257
258
259
260
    # Add the predicted LDDT in the b-factor column.
    # Note that higher predicted LDDT value means higher model confidence.
    plddt_b_factors = np.repeat(
        plddt[:, None], residue_constants.atom_type_num, axis=-1)
    unrelaxed_protein = protein.from_prediction(
        features=processed_feature_dict,
        result=prediction_result,
261
262
        b_factors=plddt_b_factors,
        remove_leading_feature_dimension=not model_runner.multimer_mode)
Augustin-Zidek's avatar
Augustin-Zidek committed
263

264
    unrelaxed_proteins[model_name] = unrelaxed_protein
265
    unrelaxed_pdbs[model_name] = protein.to_pdb(unrelaxed_protein)
Augustin-Zidek's avatar
Augustin-Zidek committed
266
267
    unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
    with open(unrelaxed_pdb_path, 'w') as f:
268
      f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
  # Rank by model confidence.
  ranked_order = [
      model_name for model_name, confidence in
      sorted(ranking_confidences.items(), key=lambda x: x[1], reverse=True)]

  # Relax predictions.
  if models_to_relax == ModelsToRelax.BEST:
    to_relax = [ranked_order[0]]
  elif models_to_relax == ModelsToRelax.ALL:
    to_relax = ranked_order
  elif models_to_relax == ModelsToRelax.NONE:
    to_relax = []

  for model_name in to_relax:
    t_0 = time.time()
    relaxed_pdb_str, _, violations = amber_relaxer.process(
        prot=unrelaxed_proteins[model_name])
    relax_metrics[model_name] = {
        'remaining_violations': violations,
        'remaining_violations_count': sum(violations)
    }
    timings[f'relax_{model_name}'] = time.time() - t_0

    relaxed_pdbs[model_name] = relaxed_pdb_str

    # Save the relaxed PDB.
    relaxed_output_path = os.path.join(
        output_dir, f'relaxed_{model_name}.pdb')
    with open(relaxed_output_path, 'w') as f:
      f.write(relaxed_pdb_str)

  # Write out relaxed PDBs in rank order.
  for idx, model_name in enumerate(ranked_order):
Augustin-Zidek's avatar
Augustin-Zidek committed
303
304
    ranked_output_path = os.path.join(output_dir, f'ranked_{idx}.pdb')
    with open(ranked_output_path, 'w') as f:
305
      if model_name in relaxed_pdbs:
306
307
308
        f.write(relaxed_pdbs[model_name])
      else:
        f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
309
310
311

  ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
  with open(ranking_output_path, 'w') as f:
312
313
314
    label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts'
    f.write(json.dumps(
        {label: ranking_confidences, 'order': ranked_order}, indent=4))
Augustin-Zidek's avatar
Augustin-Zidek committed
315
316
317
318
319
320

  logging.info('Final timings for %s: %s', fasta_name, timings)

  timings_output_path = os.path.join(output_dir, 'timings.json')
  with open(timings_output_path, 'w') as f:
    f.write(json.dumps(timings, indent=4))
321
  if models_to_relax != ModelsToRelax.NONE:
Augustin Zidek's avatar
Augustin Zidek committed
322
323
324
    relax_metrics_path = os.path.join(output_dir, 'relax_metrics.json')
    with open(relax_metrics_path, 'w') as f:
      f.write(json.dumps(relax_metrics, indent=4))
Augustin-Zidek's avatar
Augustin-Zidek committed
325
326
327
328
329
330


def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')

331
332
333
334
335
336
337
338
  for tool_name in (
      'jackhmmer', 'hhblits', 'hhsearch', 'hmmsearch', 'hmmbuild', 'kalign'):
    if not FLAGS[f'{tool_name}_binary_path'].value:
      raise ValueError(f'Could not find path to the "{tool_name}" binary. Make '
                       'sure it is installed on your system.')

  use_small_bfd = FLAGS.db_preset == 'reduced_dbs'
  _check_flag('small_bfd_database_path', 'db_preset',
339
              should_be_set=use_small_bfd)
340
  _check_flag('bfd_database_path', 'db_preset',
341
              should_be_set=not use_small_bfd)
Augustin Zidek's avatar
Augustin Zidek committed
342
  _check_flag('uniref30_database_path', 'db_preset',
343
344
              should_be_set=not use_small_bfd)

345
346
347
348
349
350
351
352
353
  run_multimer_system = 'multimer' in FLAGS.model_preset
  _check_flag('pdb70_database_path', 'model_preset',
              should_be_set=not run_multimer_system)
  _check_flag('pdb_seqres_database_path', 'model_preset',
              should_be_set=run_multimer_system)
  _check_flag('uniprot_database_path', 'model_preset',
              should_be_set=run_multimer_system)

  if FLAGS.model_preset == 'monomer_casp14':
Augustin-Zidek's avatar
Augustin-Zidek committed
354
    num_ensemble = 8
355
356
  else:
    num_ensemble = 1
Augustin-Zidek's avatar
Augustin-Zidek committed
357
358
359
360
361
362

  # Check for duplicate FASTA file names.
  fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
  if len(fasta_names) != len(set(fasta_names)):
    raise ValueError('All FASTA paths must have a unique basename.')

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  if run_multimer_system:
    template_searcher = hmmsearch.Hmmsearch(
        binary_path=FLAGS.hmmsearch_binary_path,
        hmmbuild_binary_path=FLAGS.hmmbuild_binary_path,
        database_path=FLAGS.pdb_seqres_database_path)
    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
  else:
    template_searcher = hhsearch.HHSearch(
        binary_path=FLAGS.hhsearch_binary_path,
        databases=[FLAGS.pdb70_database_path])
    template_featurizer = templates.HhsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)

  monomer_data_pipeline = pipeline.DataPipeline(
Augustin-Zidek's avatar
Augustin-Zidek committed
388
389
390
391
392
      jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
      hhblits_binary_path=FLAGS.hhblits_binary_path,
      uniref90_database_path=FLAGS.uniref90_database_path,
      mgnify_database_path=FLAGS.mgnify_database_path,
      bfd_database_path=FLAGS.bfd_database_path,
Augustin Zidek's avatar
Augustin Zidek committed
393
      uniref30_database_path=FLAGS.uniref30_database_path,
394
      small_bfd_database_path=FLAGS.small_bfd_database_path,
395
      template_searcher=template_searcher,
396
      template_featurizer=template_featurizer,
397
398
399
400
      use_small_bfd=use_small_bfd,
      use_precomputed_msas=FLAGS.use_precomputed_msas)

  if run_multimer_system:
401
    num_predictions_per_model = FLAGS.num_multimer_predictions_per_model
402
403
404
405
406
407
    data_pipeline = pipeline_multimer.DataPipeline(
        monomer_data_pipeline=monomer_data_pipeline,
        jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
        uniprot_database_path=FLAGS.uniprot_database_path,
        use_precomputed_msas=FLAGS.use_precomputed_msas)
  else:
408
    num_predictions_per_model = 1
409
    data_pipeline = monomer_data_pipeline
Augustin-Zidek's avatar
Augustin-Zidek committed
410
411

  model_runners = {}
zhuwenwen's avatar
zhuwenwen committed
412
413
  # model_names = config.MODEL_PRESETS[FLAGS.model_preset]
  model_names = FLAGS.model_names
414
  for model_name in model_names:
Augustin-Zidek's avatar
Augustin-Zidek committed
415
    model_config = config.model_config(model_name)
416
417
418
419
    if run_multimer_system:
      model_config.model.num_ensemble_eval = num_ensemble
    else:
      model_config.data.eval.num_ensemble = num_ensemble
Augustin-Zidek's avatar
Augustin-Zidek committed
420
421
422
    model_params = data.get_model_haiku_params(
        model_name=model_name, data_dir=FLAGS.data_dir)
    model_runner = model.RunModel(model_config, model_params)
423
424
    for i in range(num_predictions_per_model):
      model_runners[f'{model_name}_pred_{i}'] = model_runner
Augustin-Zidek's avatar
Augustin-Zidek committed
425
426
427
428

  logging.info('Have %d models: %s', len(model_runners),
               list(model_runners.keys()))

429
430
431
432
433
434
435
  amber_relaxer = relax.AmberRelaxation(
      max_iterations=RELAX_MAX_ITERATIONS,
      tolerance=RELAX_ENERGY_TOLERANCE,
      stiffness=RELAX_STIFFNESS,
      exclude_residues=RELAX_EXCLUDE_RESIDUES,
      max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS,
      use_gpu=FLAGS.use_gpu_relax)
Augustin-Zidek's avatar
Augustin-Zidek committed
436
437
438

  random_seed = FLAGS.random_seed
  if random_seed is None:
439
    random_seed = random.randrange(sys.maxsize // len(model_runners))
Augustin-Zidek's avatar
Augustin-Zidek committed
440
441
442
  logging.info('Using random seed %d for the data pipeline', random_seed)

  # Predict structure for each of the sequences.
443
444
  for i, fasta_path in enumerate(FLAGS.fasta_paths):
    fasta_name = fasta_names[i]
Augustin-Zidek's avatar
Augustin-Zidek committed
445
446
447
448
449
450
451
452
    predict_structure(
        fasta_path=fasta_path,
        fasta_name=fasta_name,
        output_dir_base=FLAGS.output_dir,
        data_pipeline=data_pipeline,
        model_runners=model_runners,
        amber_relaxer=amber_relaxer,
        benchmark=FLAGS.benchmark,
453
454
        random_seed=random_seed,
        models_to_relax=FLAGS.models_to_relax)
Augustin-Zidek's avatar
Augustin-Zidek committed
455
456
457
458
459
460
461


if __name__ == '__main__':
  flags.mark_flags_as_required([
      'fasta_paths',
      'output_dir',
      'data_dir',
zhuwenwen's avatar
zhuwenwen committed
462
      'model_names',
Augustin-Zidek's avatar
Augustin-Zidek committed
463
464
465
466
467
      'uniref90_database_path',
      'mgnify_database_path',
      'template_mmcif_dir',
      'max_template_date',
      'obsolete_pdbs_path',
Augustin Zidek's avatar
Augustin Zidek committed
468
      'use_gpu_relax',
Augustin-Zidek's avatar
Augustin-Zidek committed
469
470
471
  ])

  app.run(main)