run_alphafold.py 19.1 KB
Newer Older
Augustin-Zidek's avatar
Augustin-Zidek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Full AlphaFold protein structure prediction script."""
import json
import os
import pathlib
import pickle
import random
21
import shutil
Augustin-Zidek's avatar
Augustin-Zidek committed
22
23
import sys
import time
24
from typing import Dict, Union, Optional
Augustin-Zidek's avatar
Augustin-Zidek committed
25
26
27
28
29

from absl import app
from absl import flags
from absl import logging
from alphafold.common import protein
30
from alphafold.common import residue_constants
Augustin-Zidek's avatar
Augustin-Zidek committed
31
from alphafold.data import pipeline
32
from alphafold.data import pipeline_multimer
Augustin-Zidek's avatar
Augustin-Zidek committed
33
from alphafold.data import templates
34
35
from alphafold.data.tools import hhsearch
from alphafold.data.tools import hmmsearch
Augustin-Zidek's avatar
Augustin-Zidek committed
36
from alphafold.model import config
Augustin Zidek's avatar
Augustin Zidek committed
37
from alphafold.model import data
Augustin-Zidek's avatar
Augustin-Zidek committed
38
39
from alphafold.model import model
from alphafold.relax import relax
Tom Ward's avatar
Tom Ward committed
40
import numpy as np
41

Augustin-Zidek's avatar
Augustin-Zidek committed
42
43
# Internal import (7716).

44
45
logging.set_verbosity(logging.INFO)

46
47
48
49
50
51
52
53
54
55
56
57
flags.DEFINE_list(
    'fasta_paths', None, 'Paths to FASTA files, each containing a prediction '
    'target that will be folded one after another. If a FASTA file contains '
    'multiple sequences, then it will be folded as a multimer. Paths should be '
    'separated by commas. All FASTA paths must have a unique basename as the '
    'basename is used to name the output directories for each prediction.')
flags.DEFINE_list(
    'is_prokaryote_list', None, 'Optional for multimer system, not used by the '
    'single chain system. This list should contain a boolean for each fasta '
    'specifying true where the target complex is from a prokaryote, and false '
    'where it is not, or where the origin is unknown. These values determine '
    'the pairing method for the MSA.')
58
59

flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
Augustin-Zidek's avatar
Augustin-Zidek committed
60
61
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
                    'store the results.')
62
flags.DEFINE_string('jackhmmer_binary_path', shutil.which('jackhmmer'),
Augustin-Zidek's avatar
Augustin-Zidek committed
63
                    'Path to the JackHMMER executable.')
64
flags.DEFINE_string('hhblits_binary_path', shutil.which('hhblits'),
Augustin-Zidek's avatar
Augustin-Zidek committed
65
                    'Path to the HHblits executable.')
66
flags.DEFINE_string('hhsearch_binary_path', shutil.which('hhsearch'),
Augustin-Zidek's avatar
Augustin-Zidek committed
67
                    'Path to the HHsearch executable.')
68
69
70
71
72
flags.DEFINE_string('hmmsearch_binary_path', shutil.which('hmmsearch'),
                    'Path to the hmmsearch executable.')
flags.DEFINE_string('hmmbuild_binary_path', shutil.which('hmmbuild'),
                    'Path to the hmmbuild executable.')
flags.DEFINE_string('kalign_binary_path', shutil.which('kalign'),
Augustin-Zidek's avatar
Augustin-Zidek committed
73
74
75
76
77
78
79
                    'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
                    'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
                    'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
                    'database for use by HHblits.')
80
81
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
                    'version of BFD used with the "reduced_dbs" preset.')
Augustin-Zidek's avatar
Augustin-Zidek committed
82
83
flags.DEFINE_string('uniclust30_database_path', None, 'Path to the Uniclust30 '
                    'database for use by HHblits.')
84
85
flags.DEFINE_string('uniprot_database_path', None, 'Path to the Uniprot '
                    'database for use by JackHMMer.')
Augustin-Zidek's avatar
Augustin-Zidek committed
86
87
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
                    'database for use by HHsearch.')
88
89
flags.DEFINE_string('pdb_seqres_database_path', None, 'Path to the PDB '
                    'seqres database for use by hmmsearch.')
Augustin-Zidek's avatar
Augustin-Zidek committed
90
91
92
93
94
95
96
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
                    'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
                    'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
                    'mapping from obsolete PDB IDs to the PDB IDs of their '
                    'replacements.')
97
98
99
100
101
102
103
104
105
106
flags.DEFINE_enum('db_preset', 'full_dbs',
                  ['full_dbs', 'reduced_dbs'],
                  'Choose preset MSA database configuration - '
                  'smaller genetic database config (reduced_dbs) or '
                  'full genetic database config  (full_dbs)')
flags.DEFINE_enum('model_preset', 'monomer',
                  ['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'],
                  'Choose preset model configuration - the monomer model, '
                  'the monomer model with extra ensembling, monomer model with '
                  'pTM head, or multimer model')
Augustin-Zidek's avatar
Augustin-Zidek committed
107
108
109
110
111
112
113
114
115
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
                     'to obtain a timing that excludes the compilation time, '
                     'which should be more indicative of the time required for '
                     'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
                     'pipeline. By default, this is randomly generated. Note '
                     'that even if this is set, Alphafold may still not be '
                     'deterministic, because processes like GPU inference are '
                     'nondeterministic.')
116
117
118
119
120
flags.DEFINE_integer('num_multimer_predictions_per_model', 5, 'How many '
                     'predictions (each with a different random seed) will be '
                     'generated per model. E.g. if this is 2 and there are 5 '
                     'models then there will be 10 predictions per input. '
                     'Note: this FLAG only applies if model_preset=multimer')
121
flags.DEFINE_boolean('use_precomputed_msas', False, 'Whether to read MSAs that '
Augustin Zidek's avatar
Augustin Zidek committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
                     'have been written to disk instead of running the MSA '
                     'tools. The MSA files are looked up in the output '
                     'directory, so it must stay the same between multiple '
                     'runs that are to reuse the MSAs. WARNING: This will not '
                     'check if the sequence, database or configuration have '
                     'changed.')
flags.DEFINE_boolean('run_relax', True, 'Whether to run the final relaxation '
                     'step on the predicted models. Turning relax off might '
                     'result in predictions with distracting stereochemical '
                     'violations but might help in case you are having issues '
                     'with the relaxation stage.')
flags.DEFINE_boolean('use_gpu_relax', None, 'Whether to relax on GPU. '
                     'Relax on GPU can be much faster than CPU, so it is '
                     'recommended to enable if possible. GPUs must be available'
                     ' if this setting is enabled.')
137

Augustin-Zidek's avatar
Augustin-Zidek committed
138
139
140
141
142
143
144
FLAGS = flags.FLAGS

MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
145
RELAX_MAX_OUTER_ITERATIONS = 3
Augustin-Zidek's avatar
Augustin-Zidek committed
146
147


148
149
150
def _check_flag(flag_name: str,
                other_flag_name: str,
                should_be_set: bool):
151
152
  if should_be_set != bool(FLAGS[flag_name].value):
    verb = 'be' if should_be_set else 'not be'
153
154
    raise ValueError(f'{flag_name} must {verb} set when running with '
                     f'"--{other_flag_name}={FLAGS[other_flag_name].value}".')
155
156


Augustin-Zidek's avatar
Augustin-Zidek committed
157
158
159
160
def predict_structure(
    fasta_path: str,
    fasta_name: str,
    output_dir_base: str,
161
    data_pipeline: Union[pipeline.DataPipeline, pipeline_multimer.DataPipeline],
Augustin-Zidek's avatar
Augustin-Zidek committed
162
163
164
    model_runners: Dict[str, model.RunModel],
    amber_relaxer: relax.AmberRelaxation,
    benchmark: bool,
165
166
    random_seed: int,
    is_prokaryote: Optional[bool] = None):
Augustin-Zidek's avatar
Augustin-Zidek committed
167
  """Predicts structure using AlphaFold for the given sequence."""
168
  logging.info('Predicting %s', fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
169
170
171
172
173
174
175
176
177
178
  timings = {}
  output_dir = os.path.join(output_dir_base, fasta_name)
  if not os.path.exists(output_dir):
    os.makedirs(output_dir)
  msa_output_dir = os.path.join(output_dir, 'msas')
  if not os.path.exists(msa_output_dir):
    os.makedirs(msa_output_dir)

  # Get features.
  t_0 = time.time()
179
180
181
182
183
184
185
186
187
  if is_prokaryote is None:
    feature_dict = data_pipeline.process(
        input_fasta_path=fasta_path,
        msa_output_dir=msa_output_dir)
  else:
    feature_dict = data_pipeline.process(
        input_fasta_path=fasta_path,
        msa_output_dir=msa_output_dir,
        is_prokaryote=is_prokaryote)
Augustin-Zidek's avatar
Augustin-Zidek committed
188
189
190
191
192
193
194
  timings['features'] = time.time() - t_0

  # Write out features as a pickled dictionary.
  features_output_path = os.path.join(output_dir, 'features.pkl')
  with open(features_output_path, 'wb') as f:
    pickle.dump(feature_dict, f, protocol=4)

195
  unrelaxed_pdbs = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
196
  relaxed_pdbs = {}
197
  ranking_confidences = {}
Augustin-Zidek's avatar
Augustin-Zidek committed
198
199

  # Run the models.
200
201
202
203
  num_models = len(model_runners)
  for model_index, (model_name, model_runner) in enumerate(
      model_runners.items()):
    logging.info('Running model %s on %s', model_name, fasta_name)
Augustin-Zidek's avatar
Augustin-Zidek committed
204
    t_0 = time.time()
205
    model_random_seed = model_index + random_seed * num_models
Augustin-Zidek's avatar
Augustin-Zidek committed
206
    processed_feature_dict = model_runner.process_features(
207
        feature_dict, random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
208
209
210
    timings[f'process_features_{model_name}'] = time.time() - t_0

    t_0 = time.time()
211
212
    prediction_result = model_runner.predict(processed_feature_dict,
                                             random_seed=model_random_seed)
Augustin-Zidek's avatar
Augustin-Zidek committed
213
214
215
    t_diff = time.time() - t_0
    timings[f'predict_and_compile_{model_name}'] = t_diff
    logging.info(
216
217
        'Total JAX model %s on %s predict time (includes compilation time, see --benchmark): %.1fs',
        model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
218
219
220

    if benchmark:
      t_0 = time.time()
221
222
223
224
225
226
227
      model_runner.predict(processed_feature_dict,
                           random_seed=model_random_seed)
      t_diff = time.time() - t_0
      timings[f'predict_benchmark_{model_name}'] = t_diff
      logging.info(
          'Total JAX model %s on %s predict time (excludes compilation time): %.1fs',
          model_name, fasta_name, t_diff)
Augustin-Zidek's avatar
Augustin-Zidek committed
228

229
    plddt = prediction_result['plddt']
230
    ranking_confidences[model_name] = prediction_result['ranking_confidence']
Augustin-Zidek's avatar
Augustin-Zidek committed
231
232
233
234
235
236

    # Save the model outputs.
    result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
    with open(result_output_path, 'wb') as f:
      pickle.dump(prediction_result, f, protocol=4)

237
238
239
240
241
242
243
    # Add the predicted LDDT in the b-factor column.
    # Note that higher predicted LDDT value means higher model confidence.
    plddt_b_factors = np.repeat(
        plddt[:, None], residue_constants.atom_type_num, axis=-1)
    unrelaxed_protein = protein.from_prediction(
        features=processed_feature_dict,
        result=prediction_result,
244
245
        b_factors=plddt_b_factors,
        remove_leading_feature_dimension=not model_runner.multimer_mode)
Augustin-Zidek's avatar
Augustin-Zidek committed
246

247
    unrelaxed_pdbs[model_name] = protein.to_pdb(unrelaxed_protein)
Augustin-Zidek's avatar
Augustin-Zidek committed
248
249
    unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
    with open(unrelaxed_pdb_path, 'w') as f:
250
      f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
251

252
253
254
255
256
    if amber_relaxer:
      # Relax the prediction.
      t_0 = time.time()
      relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
      timings[f'relax_{model_name}'] = time.time() - t_0
Augustin-Zidek's avatar
Augustin-Zidek committed
257

258
      relaxed_pdbs[model_name] = relaxed_pdb_str
Augustin-Zidek's avatar
Augustin-Zidek committed
259

260
261
262
263
264
      # Save the relaxed PDB.
      relaxed_output_path = os.path.join(
          output_dir, f'relaxed_{model_name}.pdb')
      with open(relaxed_output_path, 'w') as f:
        f.write(relaxed_pdb_str)
Augustin-Zidek's avatar
Augustin-Zidek committed
265

266
  # Rank by model confidence and write out relaxed PDBs in rank order.
Augustin-Zidek's avatar
Augustin-Zidek committed
267
268
  ranked_order = []
  for idx, (model_name, _) in enumerate(
269
      sorted(ranking_confidences.items(), key=lambda x: x[1], reverse=True)):
Augustin-Zidek's avatar
Augustin-Zidek committed
270
271
272
    ranked_order.append(model_name)
    ranked_output_path = os.path.join(output_dir, f'ranked_{idx}.pdb')
    with open(ranked_output_path, 'w') as f:
273
274
275
276
      if amber_relaxer:
        f.write(relaxed_pdbs[model_name])
      else:
        f.write(unrelaxed_pdbs[model_name])
Augustin-Zidek's avatar
Augustin-Zidek committed
277
278
279

  ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
  with open(ranking_output_path, 'w') as f:
280
281
282
    label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts'
    f.write(json.dumps(
        {label: ranking_confidences, 'order': ranked_order}, indent=4))
Augustin-Zidek's avatar
Augustin-Zidek committed
283
284
285
286
287
288
289
290
291
292
293
294

  logging.info('Final timings for %s: %s', fasta_name, timings)

  timings_output_path = os.path.join(output_dir, 'timings.json')
  with open(timings_output_path, 'w') as f:
    f.write(json.dumps(timings, indent=4))


def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')

295
296
297
298
299
300
301
302
  for tool_name in (
      'jackhmmer', 'hhblits', 'hhsearch', 'hmmsearch', 'hmmbuild', 'kalign'):
    if not FLAGS[f'{tool_name}_binary_path'].value:
      raise ValueError(f'Could not find path to the "{tool_name}" binary. Make '
                       'sure it is installed on your system.')

  use_small_bfd = FLAGS.db_preset == 'reduced_dbs'
  _check_flag('small_bfd_database_path', 'db_preset',
303
              should_be_set=use_small_bfd)
304
  _check_flag('bfd_database_path', 'db_preset',
305
              should_be_set=not use_small_bfd)
306
  _check_flag('uniclust30_database_path', 'db_preset',
307
308
              should_be_set=not use_small_bfd)

309
310
311
312
313
314
315
316
317
  run_multimer_system = 'multimer' in FLAGS.model_preset
  _check_flag('pdb70_database_path', 'model_preset',
              should_be_set=not run_multimer_system)
  _check_flag('pdb_seqres_database_path', 'model_preset',
              should_be_set=run_multimer_system)
  _check_flag('uniprot_database_path', 'model_preset',
              should_be_set=run_multimer_system)

  if FLAGS.model_preset == 'monomer_casp14':
Augustin-Zidek's avatar
Augustin-Zidek committed
318
    num_ensemble = 8
319
320
  else:
    num_ensemble = 1
Augustin-Zidek's avatar
Augustin-Zidek committed
321
322
323
324
325
326

  # Check for duplicate FASTA file names.
  fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
  if len(fasta_names) != len(set(fasta_names)):
    raise ValueError('All FASTA paths must have a unique basename.')

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
  # Check that is_prokaryote_list has same number of elements as fasta_paths,
  # and convert to bool.
  if FLAGS.is_prokaryote_list:
    if len(FLAGS.is_prokaryote_list) != len(FLAGS.fasta_paths):
      raise ValueError('--is_prokaryote_list must either be omitted or match '
                       'length of --fasta_paths.')
    is_prokaryote_list = []
    for s in FLAGS.is_prokaryote_list:
      if s in ('true', 'false'):
        is_prokaryote_list.append(s == 'true')
      else:
        raise ValueError('--is_prokaryote_list must contain comma separated '
                         'true or false values.')
  else:  # Default is_prokaryote to False.
    is_prokaryote_list = [False] * len(fasta_names)

  if run_multimer_system:
    template_searcher = hmmsearch.Hmmsearch(
        binary_path=FLAGS.hmmsearch_binary_path,
        hmmbuild_binary_path=FLAGS.hmmbuild_binary_path,
        database_path=FLAGS.pdb_seqres_database_path)
    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
  else:
    template_searcher = hhsearch.HHSearch(
        binary_path=FLAGS.hhsearch_binary_path,
        databases=[FLAGS.pdb70_database_path])
    template_featurizer = templates.HhsearchHitFeaturizer(
        mmcif_dir=FLAGS.template_mmcif_dir,
        max_template_date=FLAGS.max_template_date,
        max_hits=MAX_TEMPLATE_HITS,
        kalign_binary_path=FLAGS.kalign_binary_path,
        release_dates_path=None,
        obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)

  monomer_data_pipeline = pipeline.DataPipeline(
Augustin-Zidek's avatar
Augustin-Zidek committed
368
369
370
371
372
373
      jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
      hhblits_binary_path=FLAGS.hhblits_binary_path,
      uniref90_database_path=FLAGS.uniref90_database_path,
      mgnify_database_path=FLAGS.mgnify_database_path,
      bfd_database_path=FLAGS.bfd_database_path,
      uniclust30_database_path=FLAGS.uniclust30_database_path,
374
      small_bfd_database_path=FLAGS.small_bfd_database_path,
375
      template_searcher=template_searcher,
376
      template_featurizer=template_featurizer,
377
378
379
380
      use_small_bfd=use_small_bfd,
      use_precomputed_msas=FLAGS.use_precomputed_msas)

  if run_multimer_system:
381
    num_predictions_per_model = FLAGS.num_multimer_predictions_per_model
382
383
384
385
386
387
    data_pipeline = pipeline_multimer.DataPipeline(
        monomer_data_pipeline=monomer_data_pipeline,
        jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
        uniprot_database_path=FLAGS.uniprot_database_path,
        use_precomputed_msas=FLAGS.use_precomputed_msas)
  else:
388
    num_predictions_per_model = 1
389
    data_pipeline = monomer_data_pipeline
Augustin-Zidek's avatar
Augustin-Zidek committed
390
391

  model_runners = {}
392
393
  model_names = config.MODEL_PRESETS[FLAGS.model_preset]
  for model_name in model_names:
Augustin-Zidek's avatar
Augustin-Zidek committed
394
    model_config = config.model_config(model_name)
395
396
397
398
    if run_multimer_system:
      model_config.model.num_ensemble_eval = num_ensemble
    else:
      model_config.data.eval.num_ensemble = num_ensemble
Augustin-Zidek's avatar
Augustin-Zidek committed
399
400
401
    model_params = data.get_model_haiku_params(
        model_name=model_name, data_dir=FLAGS.data_dir)
    model_runner = model.RunModel(model_config, model_params)
402
403
    for i in range(num_predictions_per_model):
      model_runners[f'{model_name}_pred_{i}'] = model_runner
Augustin-Zidek's avatar
Augustin-Zidek committed
404
405
406
407

  logging.info('Have %d models: %s', len(model_runners),
               list(model_runners.keys()))

Augustin Zidek's avatar
Augustin Zidek committed
408
409
410
411
412
413
414
415
416
417
  if FLAGS.run_relax:
    amber_relaxer = relax.AmberRelaxation(
        max_iterations=RELAX_MAX_ITERATIONS,
        tolerance=RELAX_ENERGY_TOLERANCE,
        stiffness=RELAX_STIFFNESS,
        exclude_residues=RELAX_EXCLUDE_RESIDUES,
        max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS,
        use_gpu=FLAGS.use_gpu_relax)
  else:
    amber_relaxer = None
Augustin-Zidek's avatar
Augustin-Zidek committed
418
419
420

  random_seed = FLAGS.random_seed
  if random_seed is None:
421
    random_seed = random.randrange(sys.maxsize // len(model_runners))
Augustin-Zidek's avatar
Augustin-Zidek committed
422
423
424
  logging.info('Using random seed %d for the data pipeline', random_seed)

  # Predict structure for each of the sequences.
425
426
427
  for i, fasta_path in enumerate(FLAGS.fasta_paths):
    is_prokaryote = is_prokaryote_list[i] if run_multimer_system else None
    fasta_name = fasta_names[i]
Augustin-Zidek's avatar
Augustin-Zidek committed
428
429
430
431
432
433
434
435
    predict_structure(
        fasta_path=fasta_path,
        fasta_name=fasta_name,
        output_dir_base=FLAGS.output_dir,
        data_pipeline=data_pipeline,
        model_runners=model_runners,
        amber_relaxer=amber_relaxer,
        benchmark=FLAGS.benchmark,
436
437
        random_seed=random_seed,
        is_prokaryote=is_prokaryote)
Augustin-Zidek's avatar
Augustin-Zidek committed
438
439
440
441
442
443
444
445
446
447
448
449


if __name__ == '__main__':
  flags.mark_flags_as_required([
      'fasta_paths',
      'output_dir',
      'data_dir',
      'uniref90_database_path',
      'mgnify_database_path',
      'template_mmcif_dir',
      'max_template_date',
      'obsolete_pdbs_path',
Augustin Zidek's avatar
Augustin Zidek committed
450
      'use_gpu_relax',
Augustin-Zidek's avatar
Augustin-Zidek committed
451
452
453
  ])

  app.run(main)