README.md 8.62 KB
Newer Older
laibao's avatar
laibao committed
1
2
3
4
5
6
<!--
 * @Author: zhuww
 * @email: zhuww@sugon.com
 * @Date: 2024-05-24 14:15:07
 * @LastEditTime: 2024-09-30 08:30:01
-->
laibao's avatar
laibao committed
7

laibao's avatar
laibao committed
8
# llava
laibao's avatar
laibao committed
9
10

## 论文
laibao's avatar
laibao committed
11

laibao's avatar
laibao committed
12
13
14
Visual Instruction Tuning

[2304.08485 (arxiv.org)](https://arxiv.org/pdf/2304.08485)
laibao's avatar
laibao committed
15
16

## 模型结构
laibao's avatar
laibao committed
17

laibao's avatar
laibao committed
18
19
LLaVA(大型语言和视觉助手)是一个开源的大型多模态模型,结合了视觉和语言能力。它通过将视觉编码器与语言模型 Vicuna 结合,实现了先进的视觉和语言理解,在多模态任务中表现优异,并在多个基准测试中(如 Science QA)设立了新的标准。LLaVA 以成本效益高的训练和高效扩展性著称,最近的更新着重提升了多模态推理能力,尤其是对高分辨率图像的理解。

laibao's avatar
laibao committed
20
LLaVA 的最新进展包括支持动态高分辨率处理,以及多语言的零样本能力,如中文,展现了在非英语数据上未经特定微调的情况下也能保持出色的表现 
laibao's avatar
laibao committed
21

laibao's avatar
laibao committed
22
<div align=center>
laibao's avatar
laibao committed
23
    <img src="./doc/llava_network.png"/>
laibao's avatar
laibao committed
24
25
26
</div>

## 算法原理
laibao's avatar
laibao committed
27

laibao's avatar
laibao committed
28
LLaVA(Large Language and Vision Assistant)的算法原理主要包括以下几个方面:
laibao's avatar
laibao committed
29

laibao's avatar
laibao committed
30
31
32
33
* **视觉指令调优** :通过使用GPT-4生成的多模态语言-图像指令数据,对模型进行调优,以提高其在新任务上的零样本能力。
* **大规模多模态模型** :将CLIP的视觉编码器与Vicuna的语言解码器连接,形成一个端到端训练的多模态模型,用于通用的视觉和语言理解。
* **数据生成** :利用GPT-4生成多模态指令跟随数据,包括对图像内容的详细描述和复杂推理问题。
* **评估基准** :构建了两个评估基准,包含多样且具有挑战性的应用任务,以测试模型的多模态对话能力。
laibao's avatar
laibao committed
34
35

## 环境配置
laibao's avatar
laibao committed
36

laibao's avatar
laibao committed
37
### Docker(方法一)
laibao's avatar
laibao committed
38

laibao's avatar
laibao committed
39
40
41
42
43
44
45
提供[光源](https://www.sourcefind.cn/#/image/dcu/custom)拉取推理的docker镜像:

```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.2-py3.10
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
laibao's avatar
laibao committed
46
47
docker run -it --name llava_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal -v <Host Path>:<Container Path> <Image ID> /bin/bash

laibao's avatar
laibao committed
48
```
laibao's avatar
laibao committed
49

laibao's avatar
laibao committed
50
51
52
`Tips:若在K100/Z100L上使用,使用定制镜像docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.5.0-dtk24.04.1-ubuntu20.04-py310-zk-v1,K100/Z100L不支持awq量化`

### Dockerfile(方法二)
laibao's avatar
laibao committed
53

laibao's avatar
laibao committed
54
55
56
```
# <Host Path>主机端路径
# <Container Path>容器映射路径
laibao's avatar
laibao committed
57
58
59
docker build -t llava:latest .
docker run -it --name llava_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal:ro -v <Host Path>:<Container Path> llava:latest /bin/bash

laibao's avatar
laibao committed
60
61
62
```

### Anaconda(方法三)
laibao's avatar
laibao committed
63

laibao's avatar
laibao committed
64
```
laibao's avatar
laibao committed
65
conda create -n llava_vllm python=3.10
laibao's avatar
laibao committed
66
```
laibao's avatar
laibao committed
67

laibao's avatar
laibao committed
68
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
laibao's avatar
laibao committed
69

laibao's avatar
laibao committed
70
71
72
73
74
75
76
77
78
79
80
81
* DTK驱动:dtk24.04.2
* Pytorch: 2.1.0
* triton:2.1.0
* lmslim: 0.1.0
* xformers: 0.0.25
* flash_attn: 2.0.4
* vllm: 0.5.0
* python: python3.10

`Tips:需先安装相关依赖,最后安装vllm包`

## 数据集
laibao's avatar
laibao committed
82

laibao's avatar
laibao committed
83
84
85
86


## 推理

laibao's avatar
laibao committed
87
88
### 模型下载

laibao's avatar
laibao committed
89
90
91
92
| 基座模型                                                         |                                                                     |                                                                                 |
| ---------------------------------------------------------------- | ------------------------------------------------------------------- | ------------------------------------------------------------------------------- |
| [llava-v1.5-7b](http://113.200.138.88:18080/aimodels/llava-v1.5-7b) | [llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) | [llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) |

laibao's avatar
laibao committed
93
### 模型推理
laibao's avatar
laibao committed
94

laibao's avatar
laibao committed
95
```bash
laibao's avatar
laibao committed
96
python examples/llava_example.py
laibao's avatar
laibao committed
97
```
laibao's avatar
laibao committed
98

laibao's avatar
laibao committed
99
100
101
102
为了确保源码能够正常运行,还需要进行以下调整:

* **去除了AWS CLI 下载逻辑**
* **移除对 `subprocess` 和 `os` 模块的部分依赖**
laibao's avatar
laibao committed
103

laibao's avatar
laibao committed
104
105
106
107
### result

使用的加速卡:单卡K100_AI  模型:[llava-v1.5-7b](http://113.200.138.88:18080/aimodels/llava-v1.5-7b)

laibao's avatar
laibao committed
108
    输入:
laibao's avatar
laibao committed
109
110
111
112
113
114
115
116

    images:


<div align="center">
    <img src="./doc/images.png" width="300" height="200"/>
</div>

laibao's avatar
laibao committed
117
    text:  What is the content of this image?
laibao's avatar
laibao committed
118
119


laibao's avatar
laibao committed
120
121


laibao's avatar
laibao committed
122
123
124
```bash
python benchmarks/benchmark_throughput.py --num-prompts 1 --input-len 32 --output-len 128 --model Qwen/Qwen1.5-7B-Chat -tp 1 --trust-remote-code --enforce-eager --dtype float16
```
laibao's avatar
laibao committed
125
126

其中 `--num-prompts`是batch数,`--input-len`是输入seqlen,`--output-len`是输出token长度,`--model`为模型路径,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。若指定 `--output-len  1`即为首字延迟。`-q gptq`为使用gptq量化模型进行推理。
laibao's avatar
laibao committed
127
128
129

2、使用数据集
下载数据集:
laibao's avatar
laibao committed
130

laibao's avatar
laibao committed
131
132
133
134
135
136
137
138
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```

```bash
python benchmarks/benchmark_throughput.py --num-prompts 1 --model Qwen/Qwen1.5-7B-Chat --dataset ShareGPT_V3_unfiltered_cleaned_split.json -tp 1 --trust-remote-code --enforce-eager --dtype float16
```

laibao's avatar
laibao committed
139
其中 `--num-prompts`是batch数,`--model`为模型路径,`--dataset`为使用的数据集,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。`-q gptq`为使用gptq量化模型进行推理。
laibao's avatar
laibao committed
140
141

### api服务推理性能测试
laibao's avatar
laibao committed
142

laibao's avatar
laibao committed
143
1、启动服务端:
laibao's avatar
laibao committed
144

laibao's avatar
laibao committed
145
146
147
148
149
```bash
python -m vllm.entrypoints.openai.api_server  --model Qwen/Qwen1.5-7B-Chat  --dtype float16 --enforce-eager -tp 1 
```

2、启动客户端:
laibao's avatar
laibao committed
150

laibao's avatar
laibao committed
151
152
153
154
```bash
python benchmarks/benchmark_serving.py --model Qwen/Qwen1.5-7B-Chat --dataset ShareGPT_V3_unfiltered_cleaned_split.json  --num-prompts 1 --trust-remote-code
```

laibao's avatar
laibao committed
155
参数同使用数据集,离线批量推理性能测试,具体参考[benchmarks/benchmark_serving.py](benchmarks/benchmark_serving.py)
laibao's avatar
laibao committed
156
157

### OpenAI兼容服务
laibao's avatar
laibao committed
158

laibao's avatar
laibao committed
159
启动服务:
laibao's avatar
laibao committed
160

laibao's avatar
laibao committed
161
162
163
```bash
python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat --enforce-eager --dtype float16 --trust-remote-code
```
laibao's avatar
laibao committed
164
165

这里 `--model`为加载模型路径,`--dtype`为数据类型:float16,默认情况使用tokenizer中的预定义聊天模板,`--chat-template`可以添加新模板覆盖默认模板,`-q gptq`为使用gptq量化模型进行推理,`-q awqq`为使用awq量化模型进行推理。
laibao's avatar
laibao committed
166
167

列出模型型号:
laibao's avatar
laibao committed
168

laibao's avatar
laibao committed
169
170
171
172
173
```bash
curl http://localhost:8000/v1/models
```

### OpenAI Completions API和vllm结合使用
laibao's avatar
laibao committed
174

laibao's avatar
laibao committed
175
176
177
178
179
180
181
182
183
184
185
```bash
curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen1.5-7B",
        "prompt": "What is deep learning?",
        "max_tokens": 7,
        "temperature": 0
    }'
```

laibao's avatar
laibao committed
186
或者使用[examples/openai_completion_client.py](examples/openai_completion_client.py)
laibao's avatar
laibao committed
187
188

### OpenAI Chat API和vllm结合使用
laibao's avatar
laibao committed
189

laibao's avatar
laibao committed
190
191
192
193
194
195
196
197
198
199
200
201
```bash
curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen1.5-7B-Chat",
        "messages": [
            {"role": "system", "content": "What is deep learning?"},
            {"role": "user", "content": "What is deep learning?"}
        ]
    }'
```

laibao's avatar
laibao committed
202
或者使用[examples/openai_chatcompletion_client.py](examples/openai_chatcompletion_client.py)
laibao's avatar
laibao committed
203
204

## result
laibao's avatar
laibao committed
205

laibao's avatar
laibao committed
206
使用的加速卡:1张 DCU-K100_AI-64G
laibao's avatar
laibao committed
207

laibao's avatar
laibao committed
208
209
210
211
212
```
Prompt: 'What is deep learning?', Generated text: ' Deep learning is a subset of machine learning that involves the use of neural networks to model and solve complex problems. Neural networks are a network of interconnected nodes or " neurons" that are designed to recognize patterns in data, learn from examples, and make predictions or decisions.\nThe term "deep" in deep learning refers to the use of multiple layers or hidden layers in these neural networks. Each layer processes the input data in a different way, extracting increasingly abstract features as the data passes through.'
```

### 精度
laibao's avatar
laibao committed
213

laibao's avatar
laibao committed
214
215
216
217
218


## 应用场景

### 算法类别
laibao's avatar
laibao committed
219

laibao's avatar
laibao committed
220
221
222
对话问答

### 热点应用行业
laibao's avatar
laibao committed
223

laibao's avatar
laibao committed
224
225
226
金融,科研,教育

## 源码仓库及问题反馈
laibao's avatar
laibao committed
227

laibao's avatar
laibao committed
228
229
230
231
* [https://developer.hpccube.com/codes/modelzoo/qwen1.5_vllm](https://developer.hpccube.com/codes/modelzoo/qwen1.5_vllm)

## 参考资料

laibao's avatar
laibao committed
232
* [https://github.com/vllm-project/vllm](https://github.com/vllm-project/vllm)