README.md 11 KB
Newer Older
laibao's avatar
laibao committed
1
2
3
4
5
6
<!--
 * @Author: zhuww
 * @email: zhuww@sugon.com
 * @Date: 2024-05-24 14:15:07
 * @LastEditTime: 2024-09-30 08:30:01
-->
laibao's avatar
laibao committed
7

laibao's avatar
laibao committed
8
# llava
laibao's avatar
laibao committed
9
10

## 论文
laibao's avatar
laibao committed
11

laibao's avatar
laibao committed
12
13
14
Visual Instruction Tuning

[2304.08485 (arxiv.org)](https://arxiv.org/pdf/2304.08485)
laibao's avatar
laibao committed
15
16

## 模型结构
laibao's avatar
laibao committed
17

laibao's avatar
laibao committed
18
19
LLaVA(大型语言和视觉助手)是一个开源的大型多模态模型,结合了视觉和语言能力。它通过将视觉编码器与语言模型 Vicuna 结合,实现了先进的视觉和语言理解,在多模态任务中表现优异,并在多个基准测试中(如 Science QA)设立了新的标准。LLaVA 以成本效益高的训练和高效扩展性著称,最近的更新着重提升了多模态推理能力,尤其是对高分辨率图像的理解。

laibao's avatar
laibao committed
20
LLaVA 的最新进展包括支持动态高分辨率处理,以及多语言的零样本能力,如中文,展现了在非英语数据上未经特定微调的情况下也能保持出色的表现 
laibao's avatar
laibao committed
21

laibao's avatar
laibao committed
22
<div align=center>
laibao's avatar
laibao committed
23
    <img src="./doc/llava_network.png"/>
laibao's avatar
laibao committed
24
25
26
</div>

## 算法原理
laibao's avatar
laibao committed
27

laibao's avatar
laibao committed
28
LLaVA(Large Language and Vision Assistant)的算法原理主要包括以下几个方面:
laibao's avatar
laibao committed
29

laibao's avatar
laibao committed
30
31
32
33
* **视觉指令调优** :通过使用GPT-4生成的多模态语言-图像指令数据,对模型进行调优,以提高其在新任务上的零样本能力。
* **大规模多模态模型** :将CLIP的视觉编码器与Vicuna的语言解码器连接,形成一个端到端训练的多模态模型,用于通用的视觉和语言理解。
* **数据生成** :利用GPT-4生成多模态指令跟随数据,包括对图像内容的详细描述和复杂推理问题。
* **评估基准** :构建了两个评估基准,包含多样且具有挑战性的应用任务,以测试模型的多模态对话能力。
laibao's avatar
laibao committed
34
35

## 环境配置
laibao's avatar
laibao committed
36

laibao's avatar
laibao committed
37
### Docker(方法一)
laibao's avatar
laibao committed
38

laibao's avatar
laibao committed
39
40
41
42
43
44
45
提供[光源](https://www.sourcefind.cn/#/image/dcu/custom)拉取推理的docker镜像:

```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.2-py3.10
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
laibao's avatar
laibao committed
46
47
docker run -it --name llava_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal -v <Host Path>:<Container Path> <Image ID> /bin/bash

laibao's avatar
laibao committed
48
```
laibao's avatar
laibao committed
49

laibao's avatar
laibao committed
50
51
52
`Tips:若在K100/Z100L上使用,使用定制镜像docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.5.0-dtk24.04.1-ubuntu20.04-py310-zk-v1,K100/Z100L不支持awq量化`

### Dockerfile(方法二)
laibao's avatar
laibao committed
53

laibao's avatar
laibao committed
54
55
56
```
# <Host Path>主机端路径
# <Container Path>容器映射路径
laibao's avatar
laibao committed
57
58
59
docker build -t llava:latest .
docker run -it --name llava_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal:ro -v <Host Path>:<Container Path> llava:latest /bin/bash

laibao's avatar
laibao committed
60
61
62
```

### Anaconda(方法三)
laibao's avatar
laibao committed
63

laibao's avatar
laibao committed
64
```
laibao's avatar
laibao committed
65
conda create -n llava_vllm python=3.10
laibao's avatar
laibao committed
66
```
laibao's avatar
laibao committed
67

laibao's avatar
laibao committed
68
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
laibao's avatar
laibao committed
69

laibao's avatar
laibao committed
70
71
72
73
74
75
76
77
78
79
80
81
* DTK驱动:dtk24.04.2
* Pytorch: 2.1.0
* triton:2.1.0
* lmslim: 0.1.0
* xformers: 0.0.25
* flash_attn: 2.0.4
* vllm: 0.5.0
* python: python3.10

`Tips:需先安装相关依赖,最后安装vllm包`

## 数据集
laibao's avatar
laibao committed
82

laibao's avatar
laibao committed
83
84
85
86


## 推理

laibao's avatar
laibao committed
87
88
### 模型下载

laibao's avatar
laibao committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
| 基座模型                                                         |                                                                     |                                                                                 |
| ---------------------------------------------------------------- | ------------------------------------------------------------------- | ------------------------------------------------------------------------------- |
| [llava-v1.5-7b](http://113.200.138.88:18080/aimodels/llava-v1.5-7b) | [llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) | [llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) |

### 推理

```
import argparse
import os

import torch
from PIL import Image

from vllm import LLM, SamplingParams
from vllm.multimodal.image import ImageFeatureData, ImagePixelData


def run_llava_pixel_values(*, disable_image_processor: bool = False):
    llm = LLM(
        model="llava/llava-1.5-7b-hf",
        image_input_type="pixel_values",
        image_token_id=32000,
        image_input_shape="1,3,336,336",
        image_feature_size=576,
        disable_image_processor=disable_image_processor,
    )

    prompt = "<image>" * 576 + (
        "\nUSER: What is the content of this image?\nASSISTANT:")

    if disable_image_processor:
        image = torch.load("images/stop_sign_pixel_values.pt")
    else:
        image = Image.open("/images/stop_sign.jpg") #图片位置

    outputs = llm.generate({
        "prompt": prompt,
        "multi_modal_data": ImagePixelData(image),
    })

    for o in outputs:
        generated_text = o.outputs[0].text
        print(generated_text)


def run_llava_image_features():
    llm = LLM(
        model="llava/llava-1.5-7b-hf",
        image_input_type="image_features",
        image_token_id=32000,
        image_input_shape="1,576,1024",
        image_feature_size=576,
    )

    prompt = "<image>" * 576 + (
        "\nUSER: What is the content of this image?\nASSISTANT:")

    image: torch.Tensor = torch.load("images/stop_sign_image_features.pt")

    sampling_params = SamplingParams(temperature=0, max_tokens=64)
    outputs = llm.generate({
            "prompt": prompt,
            "multi_modal_data": ImageFeatureData(image),
        }, sampling_params=sampling_params)
    for o in outputs:
        generated_text = o.outputs[0].text
        print(generated_text)


def main(args):
    if args.type == "pixel_values":
        run_llava_pixel_values()
    else:
        run_llava_image_features()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Demo on Llava")
    parser.add_argument("--type",
                        type=str,
                        choices=["pixel_values", "image_features"],
                        default="pixel_values",
                        help="image input type")
    args = parser.parse_args()
   
    main(args)

```
laibao's avatar
laibao committed
177

laibao's avatar
laibao committed
178
179
180
```bash
python examples/offline_inference.py
```
laibao's avatar
laibao committed
181

laibao's avatar
laibao committed
182
183
184
185
其中,`prompts`为提示词;`temperature`为控制采样随机性的值,值越小模型生成越确定,值变高模型生成更随机,0表示贪婪采样,默认为1;`max_tokens=16`为生成长度,默认为1;
`model`为模型路径;`tensor_parallel_size=1`为使用卡数,默认为1;`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理,`quantization="gptq"`为使用gptq量化进行推理,需下载以上GPTQ模型。`quantization="awq"`为使用awq量化进行推理,需下载以上AWQ模型。

### 离线批量推理性能测试
laibao's avatar
laibao committed
186

laibao's avatar
laibao committed
187
1、指定输入输出
laibao's avatar
laibao committed
188

laibao's avatar
laibao committed
189
190
191
```bash
python benchmarks/benchmark_throughput.py --num-prompts 1 --input-len 32 --output-len 128 --model Qwen/Qwen1.5-7B-Chat -tp 1 --trust-remote-code --enforce-eager --dtype float16
```
laibao's avatar
laibao committed
192
193

其中 `--num-prompts`是batch数,`--input-len`是输入seqlen,`--output-len`是输出token长度,`--model`为模型路径,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。若指定 `--output-len  1`即为首字延迟。`-q gptq`为使用gptq量化模型进行推理。
laibao's avatar
laibao committed
194
195
196

2、使用数据集
下载数据集:
laibao's avatar
laibao committed
197

laibao's avatar
laibao committed
198
199
200
201
202
203
204
205
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```

```bash
python benchmarks/benchmark_throughput.py --num-prompts 1 --model Qwen/Qwen1.5-7B-Chat --dataset ShareGPT_V3_unfiltered_cleaned_split.json -tp 1 --trust-remote-code --enforce-eager --dtype float16
```

laibao's avatar
laibao committed
206
其中 `--num-prompts`是batch数,`--model`为模型路径,`--dataset`为使用的数据集,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。`-q gptq`为使用gptq量化模型进行推理。
laibao's avatar
laibao committed
207
208

### api服务推理性能测试
laibao's avatar
laibao committed
209

laibao's avatar
laibao committed
210
1、启动服务端:
laibao's avatar
laibao committed
211

laibao's avatar
laibao committed
212
213
214
215
216
```bash
python -m vllm.entrypoints.openai.api_server  --model Qwen/Qwen1.5-7B-Chat  --dtype float16 --enforce-eager -tp 1 
```

2、启动客户端:
laibao's avatar
laibao committed
217

laibao's avatar
laibao committed
218
219
220
221
```bash
python benchmarks/benchmark_serving.py --model Qwen/Qwen1.5-7B-Chat --dataset ShareGPT_V3_unfiltered_cleaned_split.json  --num-prompts 1 --trust-remote-code
```

laibao's avatar
laibao committed
222
参数同使用数据集,离线批量推理性能测试,具体参考[benchmarks/benchmark_serving.py](benchmarks/benchmark_serving.py)
laibao's avatar
laibao committed
223
224

### OpenAI兼容服务
laibao's avatar
laibao committed
225

laibao's avatar
laibao committed
226
启动服务:
laibao's avatar
laibao committed
227

laibao's avatar
laibao committed
228
229
230
```bash
python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat --enforce-eager --dtype float16 --trust-remote-code
```
laibao's avatar
laibao committed
231
232

这里 `--model`为加载模型路径,`--dtype`为数据类型:float16,默认情况使用tokenizer中的预定义聊天模板,`--chat-template`可以添加新模板覆盖默认模板,`-q gptq`为使用gptq量化模型进行推理,`-q awqq`为使用awq量化模型进行推理。
laibao's avatar
laibao committed
233
234

列出模型型号:
laibao's avatar
laibao committed
235

laibao's avatar
laibao committed
236
237
238
239
240
```bash
curl http://localhost:8000/v1/models
```

### OpenAI Completions API和vllm结合使用
laibao's avatar
laibao committed
241

laibao's avatar
laibao committed
242
243
244
245
246
247
248
249
250
251
252
```bash
curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen1.5-7B",
        "prompt": "What is deep learning?",
        "max_tokens": 7,
        "temperature": 0
    }'
```

laibao's avatar
laibao committed
253
或者使用[examples/openai_completion_client.py](examples/openai_completion_client.py)
laibao's avatar
laibao committed
254
255

### OpenAI Chat API和vllm结合使用
laibao's avatar
laibao committed
256

laibao's avatar
laibao committed
257
258
259
260
261
262
263
264
265
266
267
268
```bash
curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen1.5-7B-Chat",
        "messages": [
            {"role": "system", "content": "What is deep learning?"},
            {"role": "user", "content": "What is deep learning?"}
        ]
    }'
```

laibao's avatar
laibao committed
269
或者使用[examples/openai_chatcompletion_client.py](examples/openai_chatcompletion_client.py)
laibao's avatar
laibao committed
270
271

## result
laibao's avatar
laibao committed
272

laibao's avatar
laibao committed
273
使用的加速卡:1张 DCU-K100_AI-64G
laibao's avatar
laibao committed
274

laibao's avatar
laibao committed
275
276
277
278
279
```
Prompt: 'What is deep learning?', Generated text: ' Deep learning is a subset of machine learning that involves the use of neural networks to model and solve complex problems. Neural networks are a network of interconnected nodes or " neurons" that are designed to recognize patterns in data, learn from examples, and make predictions or decisions.\nThe term "deep" in deep learning refers to the use of multiple layers or hidden layers in these neural networks. Each layer processes the input data in a different way, extracting increasingly abstract features as the data passes through.'
```

### 精度
laibao's avatar
laibao committed
280

laibao's avatar
laibao committed
281
282
283
284
285


## 应用场景

### 算法类别
laibao's avatar
laibao committed
286

laibao's avatar
laibao committed
287
288
289
对话问答

### 热点应用行业
laibao's avatar
laibao committed
290

laibao's avatar
laibao committed
291
292
293
金融,科研,教育

## 源码仓库及问题反馈
laibao's avatar
laibao committed
294

laibao's avatar
laibao committed
295
296
297
298
* [https://developer.hpccube.com/codes/modelzoo/qwen1.5_vllm](https://developer.hpccube.com/codes/modelzoo/qwen1.5_vllm)

## 参考资料

laibao's avatar
laibao committed
299
* [https://github.com/vllm-project/vllm](https://github.com/vllm-project/vllm)