run_fsdp_vllm.py 6.3 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy, MixedPrecision, CPUOffload
from torch.distributed.fsdp.api import ShardingStrategy, ShardedStateDictConfig, StateDictType
import torch

from verl.utils.distributed import initialize_global_process_group
from verl.third_party.vllm import LLM

from vllm import SamplingParams

import time
import torch.distributed as dist


def main():
    assert torch.cuda.is_available(), 'CUDA must be present to run FSDP vLLM example'
    local_rank, rank, world_size = initialize_global_process_group()

    local_cache_path = '~/.cache/verl/rlhf'
    local_cache_path = os.path.expanduser(local_cache_path)
    hdfs_path = 'Qwen/Qwen2-7B-Instruct'

    from verl.utils.fs import copy_to_local
    local_model_path = copy_to_local(src=hdfs_path, cache_dir=local_cache_path)
    tokenizer = AutoTokenizer.from_pretrained(local_model_path, trust_remote_code=True)
    actor_model_config = AutoConfig.from_pretrained(local_model_path, trust_remote_code=True)
    with torch.device("cuda"):
        actor_model = AutoModelForCausalLM.from_pretrained(local_model_path, trust_remote_code=True)
        actor_model.to(torch.bfloat16)

    max_prompt_length = 16
    response_length = 32
    preencode_prompts = [
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    tokenizer.pad_token = tokenizer.eos_token
    prompts = tokenizer(preencode_prompts, return_tensors='pt', padding=True)
    input_ids = prompts['input_ids']
    attention_mask = prompts['attention_mask']
    from verl.utils.torch_functional import pad_sequence_to_length
    input_ids = pad_sequence_to_length(input_ids, max_prompt_length, tokenizer.pad_token_id, left_pad=True).cuda()
    attention_mask = pad_sequence_to_length(attention_mask, max_prompt_length, 0, left_pad=True).cuda()

    from transformers import GenerationConfig
    generation_config = GenerationConfig(do_sample=False)
    actor_model.cuda()
    output = actor_model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_new_tokens=32,
        # max_length=max_length,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id,
        generation_config=generation_config,
        # renormalize_logits=True,
        output_scores=False,  # this is potentially very large
        return_dict_in_generate=True,
        use_cache=False)  # may OOM when use_cache = True
    seq = output.sequences
    response = seq[:, max_prompt_length:]

    print(f'hf response: {tokenizer.batch_decode(response)}')

    tensor_model_parallel_size = 4
    from torch.distributed.device_mesh import init_device_mesh
    device_mesh = init_device_mesh('cuda', mesh_shape=(world_size,), mesh_dim_names=['fsdp'])

    mixed_precision = MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32, buffer_dtype=torch.float32)
    fsdp_model = FSDP(actor_model,
                      use_orig_params=True,
                      auto_wrap_policy=None,
                      device_id=torch.cuda.current_device(),
                      sharding_strategy=ShardingStrategy.FULL_SHARD,
                      mixed_precision=mixed_precision,
                      cpu_offload=CPUOffload(offload_params=False),
                      sync_module_states=False,
                      device_mesh=device_mesh)

    FSDP.set_state_dict_type(fsdp_model,
                             state_dict_type=StateDictType.SHARDED_STATE_DICT,
                             state_dict_config=ShardedStateDictConfig())

    state_dict = fsdp_model.state_dict()

    sampling_params = SamplingParams(temperature=0,
                                     top_p=1,
                                     n=1,
                                     max_tokens=response_length,
                                     logprobs=1,
                                     ignore_eos=True,
                                     detokenize=False)

    print(actor_model_config)
    llm = LLM(model=None,
              tokenizer=tokenizer,
              model_hf_config=actor_model_config,
              tensor_parallel_size=tensor_model_parallel_size,
              enforce_eager=True,
              dtype='bfloat16',
              load_format='dummy_dtensor',
              gpu_memory_utilization=0.8,
              trust_remote_code=True)

    # Warmup iterations
    for _ in range(10):
        torch.cuda.synchronize()
        llm.sync_model_weights(actor_weights=state_dict, load_format='dtensor')
        torch.cuda.synchronize()
        dist.barrier()

    start_time = time.time()
    llm.sync_model_weights(actor_weights=state_dict, load_format='dtensor')
    torch.cuda.synchronize()
    dist.barrier()
    end_time = time.time()

    # Calculate elapsed time
    elapsed_time = end_time - start_time
    print(f"Time taken: {elapsed_time:.6f} seconds")

    input_ids = input_ids.cuda()
    attention_mask = attention_mask.cuda()
    idx_list = []
    batch_size = input_ids.shape[0]

    pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
    from verl.workers.rollout.vllm_rollout.vllm_rollout import _pre_process_inputs
    for i in range(batch_size):
        idx_list.append(_pre_process_inputs(pad_token_id, input_ids[i]))
    print('start generation')
    outputs = llm.generate(prompt_token_ids=idx_list, sampling_params=sampling_params, use_tqdm=False)
    vllm_output = outputs[0].cuda()
    if torch.distributed.get_rank() == 0:
        print(f'hf response: {tokenizer.batch_decode(response)}')
        print(f'vllm response: {tokenizer.batch_decode(vllm_output)}')


if __name__ == "__main__":
    main()