# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy, MixedPrecision, CPUOffload from torch.distributed.fsdp.api import ShardingStrategy, ShardedStateDictConfig, StateDictType import torch from verl.utils.distributed import initialize_global_process_group from verl.third_party.vllm import LLM from vllm import SamplingParams import time import torch.distributed as dist def main(): assert torch.cuda.is_available(), 'CUDA must be present to run FSDP vLLM example' local_rank, rank, world_size = initialize_global_process_group() local_cache_path = '~/.cache/verl/rlhf' local_cache_path = os.path.expanduser(local_cache_path) hdfs_path = 'Qwen/Qwen2-7B-Instruct' from verl.utils.fs import copy_to_local local_model_path = copy_to_local(src=hdfs_path, cache_dir=local_cache_path) tokenizer = AutoTokenizer.from_pretrained(local_model_path, trust_remote_code=True) actor_model_config = AutoConfig.from_pretrained(local_model_path, trust_remote_code=True) with torch.device("cuda"): actor_model = AutoModelForCausalLM.from_pretrained(local_model_path, trust_remote_code=True) actor_model.to(torch.bfloat16) max_prompt_length = 16 response_length = 32 preencode_prompts = [ "The president of the United States is", "The capital of France is", "The future of AI is", ] tokenizer.pad_token = tokenizer.eos_token prompts = tokenizer(preencode_prompts, return_tensors='pt', padding=True) input_ids = prompts['input_ids'] attention_mask = prompts['attention_mask'] from verl.utils.torch_functional import pad_sequence_to_length input_ids = pad_sequence_to_length(input_ids, max_prompt_length, tokenizer.pad_token_id, left_pad=True).cuda() attention_mask = pad_sequence_to_length(attention_mask, max_prompt_length, 0, left_pad=True).cuda() from transformers import GenerationConfig generation_config = GenerationConfig(do_sample=False) actor_model.cuda() output = actor_model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=32, # max_length=max_length, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, generation_config=generation_config, # renormalize_logits=True, output_scores=False, # this is potentially very large return_dict_in_generate=True, use_cache=False) # may OOM when use_cache = True seq = output.sequences response = seq[:, max_prompt_length:] print(f'hf response: {tokenizer.batch_decode(response)}') tensor_model_parallel_size = 4 from torch.distributed.device_mesh import init_device_mesh device_mesh = init_device_mesh('cuda', mesh_shape=(world_size,), mesh_dim_names=['fsdp']) mixed_precision = MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32, buffer_dtype=torch.float32) fsdp_model = FSDP(actor_model, use_orig_params=True, auto_wrap_policy=None, device_id=torch.cuda.current_device(), sharding_strategy=ShardingStrategy.FULL_SHARD, mixed_precision=mixed_precision, cpu_offload=CPUOffload(offload_params=False), sync_module_states=False, device_mesh=device_mesh) FSDP.set_state_dict_type(fsdp_model, state_dict_type=StateDictType.SHARDED_STATE_DICT, state_dict_config=ShardedStateDictConfig()) state_dict = fsdp_model.state_dict() sampling_params = SamplingParams(temperature=0, top_p=1, n=1, max_tokens=response_length, logprobs=1, ignore_eos=True, detokenize=False) print(actor_model_config) llm = LLM(model=None, tokenizer=tokenizer, model_hf_config=actor_model_config, tensor_parallel_size=tensor_model_parallel_size, enforce_eager=True, dtype='bfloat16', load_format='dummy_dtensor', gpu_memory_utilization=0.8, trust_remote_code=True) # Warmup iterations for _ in range(10): torch.cuda.synchronize() llm.sync_model_weights(actor_weights=state_dict, load_format='dtensor') torch.cuda.synchronize() dist.barrier() start_time = time.time() llm.sync_model_weights(actor_weights=state_dict, load_format='dtensor') torch.cuda.synchronize() dist.barrier() end_time = time.time() # Calculate elapsed time elapsed_time = end_time - start_time print(f"Time taken: {elapsed_time:.6f} seconds") input_ids = input_ids.cuda() attention_mask = attention_mask.cuda() idx_list = [] batch_size = input_ids.shape[0] pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id from verl.workers.rollout.vllm_rollout.vllm_rollout import _pre_process_inputs for i in range(batch_size): idx_list.append(_pre_process_inputs(pad_token_id, input_ids[i])) print('start generation') outputs = llm.generate(prompt_token_ids=idx_list, sampling_params=sampling_params, use_tqdm=False) vllm_output = outputs[0].cuda() if torch.distributed.get_rank() == 0: print(f'hf response: {tokenizer.batch_decode(response)}') print(f'vllm response: {tokenizer.batch_decode(vllm_output)}') if __name__ == "__main__": main()