tokenization_layoutlmv2_fast.py 1.87 KB
Newer Older
HHL's avatar
v  
HHL committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# coding=utf-8
from transformers.models.layoutlm.tokenization_layoutlm_fast import LayoutLMTokenizerFast
from transformers.utils import logging

from .tokenization_layoutlmv2 import LayoutLMv2Tokenizer


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "microsoft/layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/vocab.txt",
        "microsoft/layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/vocab.txt",
    },
    "tokenizer_file": {
        "microsoft/layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/tokenizer.json",
        "microsoft/layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/tokenizer.json",
    },
}


PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "microsoft/layoutlmv2-base-uncased": 512,
    "microsoft/layoutlmv2-large-uncased": 512,
}


PRETRAINED_INIT_CONFIGURATION = {
    "microsoft/layoutlmv2-base-uncased": {"do_lower_case": True},
    "microsoft/layoutlmv2-large-uncased": {"do_lower_case": True},
}


class LayoutLMv2TokenizerFast(LayoutLMTokenizerFast):
    r"""
    Constructs a "Fast" LayoutLMv2Tokenizer.

    Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning
    parameters.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    slow_tokenizer_class = LayoutLMv2Tokenizer

    def __init__(self, model_max_length=512, **kwargs):
        super().__init__(model_max_length=model_max_length, **kwargs)