# coding=utf-8 from transformers.models.layoutlm.tokenization_layoutlm_fast import LayoutLMTokenizerFast from transformers.utils import logging from .tokenization_layoutlmv2 import LayoutLMv2Tokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/vocab.txt", "microsoft/layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "microsoft/layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/tokenizer.json", "microsoft/layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlmv2-base-uncased": 512, "microsoft/layoutlmv2-large-uncased": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/layoutlmv2-base-uncased": {"do_lower_case": True}, "microsoft/layoutlmv2-large-uncased": {"do_lower_case": True}, } class LayoutLMv2TokenizerFast(LayoutLMTokenizerFast): r""" Constructs a "Fast" LayoutLMv2Tokenizer. Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION slow_tokenizer_class = LayoutLMv2Tokenizer def __init__(self, model_max_length=512, **kwargs): super().__init__(model_max_length=model_max_length, **kwargs)