turbomind.py 13.2 KB
Newer Older
q.yao's avatar
q.yao committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
3
import sys
q.yao's avatar
q.yao committed
4
5
from configparser import ConfigParser
from contextlib import contextmanager
q.yao's avatar
q.yao committed
6
7
from queue import Queue
from threading import Thread
8
9
from typing import Iterable, List

q.yao's avatar
q.yao committed
10
import numpy as np
11
import torch
q.yao's avatar
q.yao committed
12
13
from torch.nn.utils.rnn import pad_sequence

14
import lmdeploy
15
from lmdeploy.model import MODELS
16

q.yao's avatar
q.yao committed
17
18
19
# TODO: find another way import _turbomind
lmdeploy_dir = osp.split(lmdeploy.__file__)[0]
sys.path.append(osp.join(lmdeploy_dir, 'lib'))
20
import _turbomind as _tm  # noqa: E402
q.yao's avatar
q.yao committed
21
22
23


def _stop_words(stop_words: List[int]):
lvhan028's avatar
lvhan028 committed
24
    """return list of stop-words to numpy.ndarray."""
q.yao's avatar
q.yao committed
25
26
27
    if stop_words is None:
        return None
    assert isinstance(stop_words, List) and \
28
29
30
           all(isinstance(elem, int) for elem in stop_words), \
           f'stop_words must be a list but got {type(stop_words)}'

q.yao's avatar
q.yao committed
31
32
33
34
35
36
37
38
39
    # each id in stop_words represents a stop word
    # refer to https://github.com/fauxpilot/fauxpilot/discussions/165 for
    # detailed explanation about fastertransformer's stop_words
    stop_word_offsets = range(1, len(stop_words) + 1)
    stop_words = np.array([[stop_words, stop_word_offsets]]).astype(np.int32)
    return stop_words


def _np_dict_to_tm_dict(np_dict: dict):
lvhan028's avatar
lvhan028 committed
40
    """map numpy.ndarray to turbomind's tensor."""
q.yao's avatar
q.yao committed
41
42
43
44
45
46
47
48
    ret = _tm.TensorMap()
    for k, v in np_dict.items():
        ret[k] = _tm.from_dlpack(v)

    return ret


def _tm_dict_to_torch_dict(tm_dict: _tm.TensorMap):
lvhan028's avatar
lvhan028 committed
49
    """map turbomind's tensor to torch's tensor."""
q.yao's avatar
q.yao committed
50
51
52
53
54
55
56
57
58
    ret = dict()
    for k, v in tm_dict.items():
        if v.type == _tm.DataType.TYPE_UINT32:
            v = v.view(_tm.DataType.TYPE_INT32)
        ret[k] = torch.from_dlpack(v)

    return ret


q.yao's avatar
q.yao committed
59
60
61
62
63
64
65
66
@contextmanager
def cuda_ctx(device_id):
    old_device = torch.cuda.current_device()
    torch.cuda.set_device(device_id)
    yield
    torch.cuda.set_device(old_device)


q.yao's avatar
q.yao committed
67
class TurboMind:
lvhan028's avatar
lvhan028 committed
68
69
70
71
72
73
74
    """LMDeploy's inference engine.

    Args:
        model_path (str): the path of turbomind's model
        data_type (str): the data type
        eos_id (int): eos token id
    """
q.yao's avatar
q.yao committed
75
76
77
78

    def __init__(self,
                 model_path: str,
                 data_type: str = 'fp16',
79
                 eos_id: int = 2):
q.yao's avatar
q.yao committed
80
81
        self.eos_id = eos_id

q.yao's avatar
q.yao committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        # TODO: support mpi
        node_id = 0
        node_num = 1

        # read meta from model path
        self.gpu_count = 1
        self.session_len = 2048
        ini_path = osp.join(model_path, 'triton_models/weights/config.ini')
        with open(ini_path, 'r') as f:
            parser = ConfigParser()
            parser.read_file(f)
            section_name = ''
            if 'turbomind' in parser:
                section_name = 'turbomind'
            elif 'llama' in parser:
                section_name = 'llama'

            if len(section_name) > 0:
                self.gpu_count = parser.getint(section_name,
                                               'tensor_para_size')
                self.session_len = parser.getint(section_name, 'session_len')
103
104
105
            self.model_name = parser.get(section_name, 'model_name')
        model = MODELS.get(self.model_name)()
        self.stop_words = _stop_words(model.stop_words)
q.yao's avatar
q.yao committed
106
107

        # params
q.yao's avatar
q.yao committed
108
109
110
111
        self.node_id = node_id
        self.node_num = node_num
        self.world_size = self.node_num * self.gpu_count

q.yao's avatar
q.yao committed
112
        # create model
q.yao's avatar
q.yao committed
113
114
115
116
        weight_dir = osp.join(model_path, 'triton_models', 'weights')
        model = _tm.AbstractTransformerModel.create_llama_model(
            weight_dir, tensor_para_size=self.gpu_count, data_type=data_type)
        self.model = model
q.yao's avatar
q.yao committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        self.nccl_params = model.create_nccl_params(self.node_id)
        torch.cuda.synchronize()

        # create weight
        def _create_weight(device_id):
            with cuda_ctx(device_id):
                rank = self.node_id * self.gpu_count + device_id
                model.create_shared_weights(device_id, rank)

        threads = []
        for device_id in range(self.gpu_count):
            t = Thread(target=_create_weight, args=(device_id, ))
            t.start()
            threads.append(t)
        for t in threads:
            t.join()

q.yao's avatar
q.yao committed
134
    def create_instance(self, cuda_stream_id=0):
lvhan028's avatar
lvhan028 committed
135
136
137
138
139
140
141
        """Create a turbomind instance.

        Args:
            cuda_stream_id(int): identity of a cuda stream
        Returns:
            TurboMindInstance: an instance of turbomind
        """
q.yao's avatar
q.yao committed
142
        return TurboMindInstance(self, cuda_stream_id)
q.yao's avatar
q.yao committed
143
144
145


class TurboMindInstance:
lvhan028's avatar
lvhan028 committed
146
147
148
149
150
151
    """Instance of TurboMind.

    Args:
        tm_model (str): turbomind's model path
        cuda_stream_id(int): identity of a cuda stream
    """
q.yao's avatar
q.yao committed
152

q.yao's avatar
q.yao committed
153
    def __init__(self, tm_model, cuda_stream_id=0):
q.yao's avatar
q.yao committed
154
        self.tm_model = tm_model
q.yao's avatar
q.yao committed
155
156
157
158
        self.cuda_stream_id = cuda_stream_id

        self.node_id = tm_model.node_id
        self.gpu_count = tm_model.gpu_count
q.yao's avatar
q.yao committed
159
160
161
162
163

        self.stop_words = tm_model.stop_words
        self.eos_id = tm_model.eos_id
        self.session_len = tm_model.session_len

q.yao's avatar
q.yao committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        self.nccl_params = tm_model.nccl_params
        self.instance_comm = tm_model.model.create_instance_comm(
            self.gpu_count)

        # create model instances
        model_insts = [None] * self.gpu_count
        threads = []
        for device_id in range(self.gpu_count):
            t = Thread(target=self._create_model_instance,
                       args=(device_id, model_insts))
            t.start()
            threads.append(t)
        for t in threads:
            t.join()

        self.model_insts = model_insts
q.yao's avatar
q.yao committed
180
        self.que = Queue()
q.yao's avatar
q.yao committed
181
182
183
184
185
186
187
188
        self.threads = [None] * self.gpu_count

    def _create_model_instance(self, device_id, model_insts):
        with cuda_ctx(device_id):
            rank = self.node_id * self.gpu_count + device_id
            model_inst = self.tm_model.model.create_model_instance(
                device_id, rank, self.cuda_stream_id, self.nccl_params)
            model_insts[device_id] = model_inst
q.yao's avatar
q.yao committed
189
190
191
192
193
194

    def _forward_callback(self, result, ctx):
        self.que.put((False, result))

    def _forward_thread(self, inputs):

q.yao's avatar
q.yao committed
195
196
197
198
199
200
        def _func(device_id, enque_output):
            with cuda_ctx(device_id):
                output = self.model_insts[device_id].forward(
                    inputs, self.instance_comm)
                if enque_output:
                    self.que.put((True, output))
q.yao's avatar
q.yao committed
201

q.yao's avatar
q.yao committed
202
203
204
205
        for device_id in range(self.gpu_count):
            t = Thread(target=_func, args=(device_id, device_id == 0))
            t.start()
            self.threads[device_id] = t
q.yao's avatar
q.yao committed
206
207
208
209
210
211
212
213
214
215
216
217

    def stream_infer(self,
                     session_id,
                     input_ids,
                     request_output_len: int = 512,
                     sequence_start: bool = True,
                     sequence_end: bool = False,
                     step=1,
                     stop=False,
                     top_p=0.8,
                     top_k=40,
                     temperature=0.8,
218
                     repetition_penalty=1.0,
q.yao's avatar
q.yao committed
219
                     ignore_eos=False,
q.yao's avatar
q.yao committed
220
221
                     random_seed=None,
                     stream_output=False):
lvhan028's avatar
lvhan028 committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        """Perform model inference.

        Args:
            session_id (int): the id of a session
            input_ids (numpy.ndarray): the token ids of a prompt
            request_output_len (int): the max number of to-be-generated tokens
            sequence_start (bool): indicator for starting a sequence
            sequence_end (bool): indicator for ending a sequence
            step (int): the offset of the k/v cache
            stop (bool): indicator for cancelling the session
            top_p (float): If set to float < 1, only the smallest set of most
              probable tokens with probabilities that add up to top_p or higher
            are kept for generation.
            top_k (int): The number of the highest probability vocabulary
              tokens to keep for top-k-filtering
            temperature (float): to modulate the next token probability
            repetition_penalty (float): The parameter for repetition penalty.
              1.0 means no penalty
            ignore_eos (bool): indicator for ignoring eos
            random_seed (int): seed used by sampling
            stream_output (bool): indicator for stream output
        """
q.yao's avatar
q.yao committed
244
        if stream_output:
q.yao's avatar
q.yao committed
245
            self.model_insts[0].register_callback(self._forward_callback)
q.yao's avatar
q.yao committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

        if len(input_ids) == 0:
            input_ids = []
        if isinstance(input_ids[0], int):
            input_ids = [input_ids]

        batch_size = len(input_ids)

        def _broadcast_np(data, dtype, shape=(batch_size, )):
            if isinstance(data, Iterable):
                assert len(data) == batch_size
                return data

            return np.full(shape, data, dtype=dtype)

        input_ids = [torch.IntTensor(ids) for ids in input_ids]
        input_lengths = torch.IntTensor([len(ids) for ids in input_ids])
263
264
265
        input_ids = pad_sequence(input_ids,
                                 batch_first=True,
                                 padding_value=self.eos_id)
q.yao's avatar
q.yao committed
266
267
268
269
270

        if isinstance(session_id, int):
            session_id = [session_id]
        assert len(session_id) == batch_size

q.yao's avatar
q.yao committed
271
272
        step = _broadcast_np(step, np.int32)

q.yao's avatar
q.yao committed
273
274
275
        inputs = dict(
            input_ids=input_ids,
            input_lengths=input_lengths,
276
277
278
            request_output_len=np.full(input_lengths.shape,
                                       request_output_len,
                                       dtype=np.uint32),
q.yao's avatar
q.yao committed
279
280
281
282
            runtime_top_k=_broadcast_np(top_k, np.uint32),
            runtime_top_p=_broadcast_np(top_p, np.float32),
            temperature=_broadcast_np(temperature, np.float32),
            repetition_penalty=_broadcast_np(repetition_penalty, np.float32),
q.yao's avatar
q.yao committed
283
            step=step,
q.yao's avatar
q.yao committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

            # session input
            session_len=self.session_len *
            np.ones([
                batch_size,
            ], dtype=np.uint32),
            START=_broadcast_np((1 if sequence_start else 0), np.int32),
            END=_broadcast_np((1 if sequence_end else 0), np.int32),
            CORRID=np.array(session_id, dtype=np.uint64),
            STOP=_broadcast_np((1 if stop else 0), np.int32))

        if ignore_eos:
            stop_words = None
            bad_words = torch.tensor([[[self.eos_id], [1]]], dtype=torch.int32)
        else:
            stop_words = self.stop_words
            bad_words = None

        if stop_words is not None:
            inputs['stop_words_list'] = stop_words
        if bad_words is not None:
            inputs['bad_words_list'] = bad_words

        if random_seed is not None:
            inputs['random_seed'] = _broadcast_np(random_seed, np.uint64)
        tm_inputs = _np_dict_to_tm_dict(inputs)

q.yao's avatar
q.yao committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        # start forward thread
        self._forward_thread(tm_inputs)

        seq_start = input_lengths + input_lengths.new_tensor(step)

        # generator
        while True:
            while self.que.qsize() > 1:
                self.que.get()

            finish, tm_outputs = self.que.get()

            outputs = _tm_dict_to_torch_dict(tm_outputs)

            output_ids = outputs['output_ids'][:, 0, :]
            sequence_length = outputs['sequence_length'].long()[:, 0].cpu()
            output_ids = [
                output_id[s:l] for output_id, s, l in zip(
                    output_ids, seq_start, sequence_length)
            ]
            sequence_length -= seq_start.to(sequence_length.device)
            yield [(output, l.item())
                   for output, l in zip(output_ids, sequence_length)]

            if finish:
q.yao's avatar
q.yao committed
336
337
                for t in self.threads:
                    t.join()
q.yao's avatar
q.yao committed
338
339
340
                while self.que.qsize() > 0:
                    self.que.get()
                break
q.yao's avatar
q.yao committed
341

q.yao's avatar
q.yao committed
342
        if stream_output:
q.yao's avatar
q.yao committed
343
            self.model_insts[0].unregister_callback()
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

    def decode(self, input_ids):
        """Perform context decode on input tokens.

        Args:
            input_ids (numpy.ndarray): the batch of input token ids
        """

        if len(input_ids) == 0:
            input_ids = []
        if isinstance(input_ids[0], int):
            input_ids = [input_ids]

        # append an extra token since input_len-1 tokens will be
        # decoded by context decoder
        for inputs in input_ids:
            inputs.append(0)

        batch_size = len(input_ids)

        def _broadcast_np(data, dtype, shape=(batch_size, )):
            if isinstance(data, Iterable):
                assert len(data) == batch_size
                return data

            return np.full(shape, data, dtype=dtype)

        input_ids = [torch.IntTensor(ids) for ids in input_ids]
        input_lengths = torch.IntTensor([len(ids) for ids in input_ids])
        input_ids = pad_sequence(input_ids,
                                 batch_first=True,
                                 padding_value=self.eos_id)

        inputs = dict(input_ids=input_ids,
                      input_lengths=input_lengths,
                      request_output_len=_broadcast_np(0, dtype=np.uint32),
                      is_return_logits=_broadcast_np(1, np.uint32))

        tm_inputs = _np_dict_to_tm_dict(inputs)

        # start forward thread
        self._forward_thread(tm_inputs)

        _, tm_outputs = self.que.get()

        outputs = _tm_dict_to_torch_dict(tm_outputs)
        logits = outputs['logits']

        return logits[:, :-1, :]