turbomind.py 7.99 KB
Newer Older
q.yao's avatar
q.yao committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
3
import sys
q.yao's avatar
q.yao committed
4
5
from queue import Queue
from threading import Thread
6
7
from typing import Iterable, List

q.yao's avatar
q.yao committed
8
import numpy as np
9
import torch
q.yao's avatar
q.yao committed
10
11
from torch.nn.utils.rnn import pad_sequence

12
13
import lmdeploy

q.yao's avatar
q.yao committed
14
15
16
# TODO: find another way import _turbomind
lmdeploy_dir = osp.split(lmdeploy.__file__)[0]
sys.path.append(osp.join(lmdeploy_dir, 'lib'))
17
import _turbomind as _tm  # noqa: E402
q.yao's avatar
q.yao committed
18
19
20
21
22
23


def _stop_words(stop_words: List[int]):
    if stop_words is None:
        return None
    assert isinstance(stop_words, List) and \
24
25
26
           all(isinstance(elem, int) for elem in stop_words), \
           f'stop_words must be a list but got {type(stop_words)}'

q.yao's avatar
q.yao committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    # each id in stop_words represents a stop word
    # refer to https://github.com/fauxpilot/fauxpilot/discussions/165 for
    # detailed explanation about fastertransformer's stop_words
    stop_word_offsets = range(1, len(stop_words) + 1)
    stop_words = np.array([[stop_words, stop_word_offsets]]).astype(np.int32)
    return stop_words


def _np_dict_to_tm_dict(np_dict: dict):
    ret = _tm.TensorMap()
    for k, v in np_dict.items():
        ret[k] = _tm.from_dlpack(v)

    return ret


def _tm_dict_to_torch_dict(tm_dict: _tm.TensorMap):
    ret = dict()
    for k, v in tm_dict.items():
        if v.type == _tm.DataType.TYPE_UINT32:
            v = v.view(_tm.DataType.TYPE_INT32)
        ret[k] = torch.from_dlpack(v)

    return ret


class TurboMind:

    def __init__(self,
                 model_path: str,
                 data_type: str = 'fp16',
                 session_len: int = 2048,
                 eos_id: int = 2,
                 stop_words: List[int] = None,
                 device_id: int = 0,
                 node_id: int = 0,
                 device_num: int = 1,
                 node_num: int = 1):
        self.eos_id = eos_id

        # create model instance
        self.node_id = node_id
        self.node_num = node_num
        self.gpu_count = device_num
        self.device_id = device_id
        self.world_size = self.node_num * self.gpu_count
        self.rank = self.node_id * self.gpu_count + self.device_id
        self.session_len = session_len

        weight_dir = osp.join(model_path, 'triton_models', 'weights')
        model = _tm.AbstractTransformerModel.create_llama_model(
            weight_dir, tensor_para_size=self.gpu_count, data_type=data_type)
        model.create_shared_weights(self.device_id, self.rank)
        self.model = model
        self.stop_words = _stop_words(stop_words)

q.yao's avatar
q.yao committed
83
84
    def create_instance(self, cuda_stream_id=0):
        return TurboMindInstance(self, cuda_stream_id)
q.yao's avatar
q.yao committed
85
86
87
88


class TurboMindInstance:

q.yao's avatar
q.yao committed
89
    def __init__(self, tm_model, cuda_stream_id=0):
q.yao's avatar
q.yao committed
90
91
92
93
94
95
96
        self.tm_model = tm_model

        self.device_id = tm_model.device_id
        self.rank = tm_model.rank
        self.stop_words = tm_model.stop_words
        self.eos_id = tm_model.eos_id
        self.session_len = tm_model.session_len
q.yao's avatar
q.yao committed
97
        self.cuda_stream_id = cuda_stream_id
q.yao's avatar
q.yao committed
98
99
100
101
102
103
104
105

        # create instance
        model = tm_model.model
        nccl_params = model.create_nccl_params(tm_model.node_id)
        custom_comms = model.create_custom_comms(tm_model.world_size)
        instance_comm = model.create_instance_comm(tm_model.gpu_count)

        model_inst = model.create_model_instance(self.device_id, self.rank,
q.yao's avatar
q.yao committed
106
107
108
                                                 self.cuda_stream_id,
                                                 nccl_params, custom_comms[0])
        # model_inst.register_callback(self._forward_callback)
q.yao's avatar
q.yao committed
109
110
        self.model_inst = model_inst
        self.instance_comm = instance_comm
q.yao's avatar
q.yao committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        self.que = Queue()
        self.thread = None

    def _forward_callback(self, result, ctx):
        self.que.put((False, result))

    def _forward_thread(self, inputs):

        def _func():
            output = self.model_inst.forward(inputs, self.instance_comm)
            self.que.put((True, output))

        self.thread = Thread(target=_func)
        self.thread.start()
q.yao's avatar
q.yao committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    def stream_infer(self,
                     session_id,
                     input_ids,
                     request_output_len: int = 512,
                     sequence_start: bool = True,
                     sequence_end: bool = False,
                     step=1,
                     stop=False,
                     top_p=0.8,
                     top_k=40,
                     temperature=0.8,
                     repetition_penalty=1.05,
                     ignore_eos=False,
q.yao's avatar
q.yao committed
139
140
141
142
143
                     random_seed=None,
                     stream_output=False):

        if stream_output:
            self.model_inst.register_callback(self._forward_callback)
q.yao's avatar
q.yao committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

        if len(input_ids) == 0:
            input_ids = []
        if isinstance(input_ids[0], int):
            input_ids = [input_ids]

        batch_size = len(input_ids)

        def _broadcast_np(data, dtype, shape=(batch_size, )):
            if isinstance(data, Iterable):
                assert len(data) == batch_size
                return data

            return np.full(shape, data, dtype=dtype)

        input_ids = [torch.IntTensor(ids) for ids in input_ids]
        input_lengths = torch.IntTensor([len(ids) for ids in input_ids])
161
162
163
        input_ids = pad_sequence(input_ids,
                                 batch_first=True,
                                 padding_value=self.eos_id)
q.yao's avatar
q.yao committed
164
165
166
167
168

        if isinstance(session_id, int):
            session_id = [session_id]
        assert len(session_id) == batch_size

q.yao's avatar
q.yao committed
169
170
        step = _broadcast_np(step, np.int32)

q.yao's avatar
q.yao committed
171
172
173
        inputs = dict(
            input_ids=input_ids,
            input_lengths=input_lengths,
174
175
176
            request_output_len=np.full(input_lengths.shape,
                                       request_output_len,
                                       dtype=np.uint32),
q.yao's avatar
q.yao committed
177
178
179
180
            runtime_top_k=_broadcast_np(top_k, np.uint32),
            runtime_top_p=_broadcast_np(top_p, np.float32),
            temperature=_broadcast_np(temperature, np.float32),
            repetition_penalty=_broadcast_np(repetition_penalty, np.float32),
q.yao's avatar
q.yao committed
181
            step=step,
q.yao's avatar
q.yao committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

            # session input
            session_len=self.session_len *
            np.ones([
                batch_size,
            ], dtype=np.uint32),
            START=_broadcast_np((1 if sequence_start else 0), np.int32),
            END=_broadcast_np((1 if sequence_end else 0), np.int32),
            CORRID=np.array(session_id, dtype=np.uint64),
            STOP=_broadcast_np((1 if stop else 0), np.int32))

        if ignore_eos:
            stop_words = None
            bad_words = torch.tensor([[[self.eos_id], [1]]], dtype=torch.int32)
        else:
            stop_words = self.stop_words
            bad_words = None

        if stop_words is not None:
            inputs['stop_words_list'] = stop_words
        if bad_words is not None:
            inputs['bad_words_list'] = bad_words

        if random_seed is not None:
            inputs['random_seed'] = _broadcast_np(random_seed, np.uint64)
        tm_inputs = _np_dict_to_tm_dict(inputs)

q.yao's avatar
q.yao committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        # start forward thread
        self._forward_thread(tm_inputs)

        seq_start = input_lengths + input_lengths.new_tensor(step)

        # generator
        while True:
            while self.que.qsize() > 1:
                self.que.get()

            finish, tm_outputs = self.que.get()

            outputs = _tm_dict_to_torch_dict(tm_outputs)

            output_ids = outputs['output_ids'][:, 0, :]
            sequence_length = outputs['sequence_length'].long()[:, 0].cpu()
            output_ids = [
                output_id[s:l] for output_id, s, l in zip(
                    output_ids, seq_start, sequence_length)
            ]
            sequence_length -= seq_start.to(sequence_length.device)
            yield [(output, l.item())
                   for output, l in zip(output_ids, sequence_length)]

            if finish:
                while self.que.qsize() > 0:
                    self.que.get()
                self.thread.join()
                break
q.yao's avatar
q.yao committed
238

q.yao's avatar
q.yao committed
239
240
        if stream_output:
            self.model_inst.unregister_callback()