tokenizer.py 5.18 KB
Newer Older
q.yao's avatar
q.yao committed
1
2
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
q.yao's avatar
q.yao committed
3
from typing import Sequence
4

q.yao's avatar
q.yao committed
5
import torch
6

q.yao's avatar
q.yao committed
7

q.yao's avatar
q.yao committed
8
9
class SentencePieceTokenizer:
    """Tokenizer of sentencepiece.
lvhan028's avatar
lvhan028 committed
10
11
12
13

    Args:
        model_file (str): the path of the tokenizer model
    """
q.yao's avatar
q.yao committed
14
15

    def __init__(self, model_file: str):
q.yao's avatar
q.yao committed
16
17
        from sentencepiece import SentencePieceProcessor
        self.model = SentencePieceProcessor(model_file=model_file)
q.yao's avatar
q.yao committed
18

q.yao's avatar
q.yao committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size()

    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_id()

    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_id()
q.yao's avatar
q.yao committed
33
34

    def encode(self, s: str):
lvhan028's avatar
lvhan028 committed
35
36
37
38
39
40
41
        """Tokenize a prompt.

        Args:
            s (str): a prompt
        Returns:
            list[int]: token ids
        """
q.yao's avatar
q.yao committed
42
43
44
45
46
47
48
49
50
        add_bos = False
        add_eos = False
        if s.find('<BOS>') != -1:
            s = s.replace('<BOS>', '')
            add_bos = True
        if s == '<EOS>':
            s = ''
            add_eos = True
        return self.model.Encode(s, add_bos=add_bos, add_eos=add_eos)
q.yao's avatar
q.yao committed
51
52

    def decode(self, t: Sequence[int]):
lvhan028's avatar
lvhan028 committed
53
54
55
56
57
58
59
        """De-tokenize.

        Args:
            t (List[int]): a list of token ids
        Returns:
            str: text of decoding tokens
        """
q.yao's avatar
q.yao committed
60
61
62
        if isinstance(t, torch.Tensor):
            t = t.tolist()
        return self.model.Decode(t)
q.yao's avatar
q.yao committed
63

64

q.yao's avatar
q.yao committed
65
66
class HuggingFaceTokenizer:
    """Tokenizer of sentencepiece.
lvhan028's avatar
lvhan028 committed
67
68

    Args:
q.yao's avatar
q.yao committed
69
        model_dir (str): the directory of the tokenizer model
lvhan028's avatar
lvhan028 committed
70
    """
71

q.yao's avatar
q.yao committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    def __init__(self, model_dir: str):
        from transformers import AutoTokenizer
        model_file = osp.join(model_dir, 'tokenizer.model')
        backend_tokenizer_file = osp.join(model_dir, 'tokenizer.json')
        model_file_exists = osp.exists(model_file)
        if not osp.exists(backend_tokenizer_file) and model_file_exists:
            print('WARNING: Can not find tokenizer.json. '
                  'It may take long time to initialize the tokenizer.')
        self.model = AutoTokenizer.from_pretrained(model_dir,
                                                   trust_remote_code=True)
        # save tokenizer.json to reuse
        if not osp.exists(backend_tokenizer_file) and model_file_exists:
            if hasattr(self.model, 'backend_tokenizer'):
                self.model.backend_tokenizer.save(backend_tokenizer_file)
q.yao's avatar
q.yao committed
86

q.yao's avatar
q.yao committed
87
88
89
90
    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size
q.yao's avatar
q.yao committed
91

q.yao's avatar
q.yao committed
92
93
94
95
    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_token_id
q.yao's avatar
q.yao committed
96

q.yao's avatar
q.yao committed
97
98
99
100
101
102
103
    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_token_id

    def encode(self, s: str):
        """Tokenize a prompt.
q.yao's avatar
q.yao committed
104

q.yao's avatar
q.yao committed
105
106
        Args:
            s (str): a prompt
q.yao's avatar
q.yao committed
107
        Returns:
q.yao's avatar
q.yao committed
108
            list[int]: token ids
q.yao's avatar
q.yao committed
109
        """
q.yao's avatar
q.yao committed
110
111
112
113
114
115
116
117
        add_special_tokens = False
        if s.find('<BOS>') != -1:
            s = s.replace('<BOS>', '<s>')
        if s == '<EOS>':
            s = '</s>'
        if len(s) == 0:
            add_special_tokens = True
        return self.model.encode(s, add_special_tokens=add_special_tokens)
118

q.yao's avatar
q.yao committed
119
120
121
122
123
124
125
126
127
128
    def decode(self, t: Sequence[int]):
        """De-tokenize.

        Args:
            t (List[int]): a list of token ids
        Returns:
            str: text of decoding tokens
        """
        skip_special_tokens = True
        return self.model.decode(t, skip_special_tokens=skip_special_tokens)
q.yao's avatar
q.yao committed
129
130


q.yao's avatar
q.yao committed
131
132
class Tokenizer:
    """Tokenize prompts or de-tokenize tokens into texts.
lvhan028's avatar
lvhan028 committed
133
134

    Args:
q.yao's avatar
q.yao committed
135
        model_file (str): the path of the tokenizer model
lvhan028's avatar
lvhan028 committed
136
    """
137

q.yao's avatar
q.yao committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    def __init__(self, model_file: str):
        if model_file.endswith('.model'):
            model_folder = osp.split(model_file)[0]
        else:
            model_folder = model_file
            model_file = osp.join(model_folder, 'tokenizer.model')
        tokenizer_config_file = osp.join(model_folder, 'tokenizer_config.json')

        model_file_exists = osp.exists(model_file)
        config_exists = osp.exists(tokenizer_config_file)
        use_hf_model = config_exists or not model_file_exists

        if not use_hf_model:
            self.model = SentencePieceTokenizer(model_file)
        else:
            self.model = HuggingFaceTokenizer(model_folder)

    @property
    def vocab_size(self):
        """vocabulary size."""
        return self.model.vocab_size
q.yao's avatar
q.yao committed
159

q.yao's avatar
q.yao committed
160
161
162
163
    @property
    def bos_token_id(self):
        """begine of the sentence token id."""
        return self.model.bos_token_id
q.yao's avatar
q.yao committed
164

q.yao's avatar
q.yao committed
165
166
167
168
169
170
171
    @property
    def eos_token_id(self):
        """end of the sentence token id."""
        return self.model.eos_token_id

    def encode(self, s: str):
        """Tokenize a prompt.
q.yao's avatar
q.yao committed
172
173

        Args:
q.yao's avatar
q.yao committed
174
175
176
177
178
179
180
181
            s (str): a prompt
        Returns:
            list[int]: token ids
        """
        return self.model.encode(s)

    def decode(self, t: Sequence[int]):
        """De-tokenize.
q.yao's avatar
q.yao committed
182

q.yao's avatar
q.yao committed
183
184
        Args:
            t (List[int]): a list of token ids
q.yao's avatar
q.yao committed
185
        Returns:
q.yao's avatar
q.yao committed
186
            str: text of decoding tokens
q.yao's avatar
q.yao committed
187
        """
q.yao's avatar
q.yao committed
188
        return self.model.decode(t)