# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Sequence import torch class SentencePieceTokenizer: """Tokenizer of sentencepiece. Args: model_file (str): the path of the tokenizer model """ def __init__(self, model_file: str): from sentencepiece import SentencePieceProcessor self.model = SentencePieceProcessor(model_file=model_file) @property def vocab_size(self): """vocabulary size.""" return self.model.vocab_size() @property def bos_token_id(self): """begine of the sentence token id.""" return self.model.bos_id() @property def eos_token_id(self): """end of the sentence token id.""" return self.model.eos_id() def encode(self, s: str): """Tokenize a prompt. Args: s (str): a prompt Returns: list[int]: token ids """ add_bos = False add_eos = False if s.find('') != -1: s = s.replace('', '') add_bos = True if s == '': s = '' add_eos = True return self.model.Encode(s, add_bos=add_bos, add_eos=add_eos) def decode(self, t: Sequence[int]): """De-tokenize. Args: t (List[int]): a list of token ids Returns: str: text of decoding tokens """ if isinstance(t, torch.Tensor): t = t.tolist() return self.model.Decode(t) class HuggingFaceTokenizer: """Tokenizer of sentencepiece. Args: model_dir (str): the directory of the tokenizer model """ def __init__(self, model_dir: str): from transformers import AutoTokenizer model_file = osp.join(model_dir, 'tokenizer.model') backend_tokenizer_file = osp.join(model_dir, 'tokenizer.json') model_file_exists = osp.exists(model_file) if not osp.exists(backend_tokenizer_file) and model_file_exists: print('WARNING: Can not find tokenizer.json. ' 'It may take long time to initialize the tokenizer.') self.model = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) # save tokenizer.json to reuse if not osp.exists(backend_tokenizer_file) and model_file_exists: if hasattr(self.model, 'backend_tokenizer'): self.model.backend_tokenizer.save(backend_tokenizer_file) @property def vocab_size(self): """vocabulary size.""" return self.model.vocab_size @property def bos_token_id(self): """begine of the sentence token id.""" return self.model.bos_token_id @property def eos_token_id(self): """end of the sentence token id.""" return self.model.eos_token_id def encode(self, s: str): """Tokenize a prompt. Args: s (str): a prompt Returns: list[int]: token ids """ add_special_tokens = False if s.find('') != -1: s = s.replace('', '') if s == '': s = '' if len(s) == 0: add_special_tokens = True return self.model.encode(s, add_special_tokens=add_special_tokens) def decode(self, t: Sequence[int]): """De-tokenize. Args: t (List[int]): a list of token ids Returns: str: text of decoding tokens """ skip_special_tokens = True return self.model.decode(t, skip_special_tokens=skip_special_tokens) class Tokenizer: """Tokenize prompts or de-tokenize tokens into texts. Args: model_file (str): the path of the tokenizer model """ def __init__(self, model_file: str): if model_file.endswith('.model'): model_folder = osp.split(model_file)[0] else: model_folder = model_file model_file = osp.join(model_folder, 'tokenizer.model') tokenizer_config_file = osp.join(model_folder, 'tokenizer_config.json') model_file_exists = osp.exists(model_file) config_exists = osp.exists(tokenizer_config_file) use_hf_model = config_exists or not model_file_exists if not use_hf_model: self.model = SentencePieceTokenizer(model_file) else: self.model = HuggingFaceTokenizer(model_folder) @property def vocab_size(self): """vocabulary size.""" return self.model.vocab_size @property def bos_token_id(self): """begine of the sentence token id.""" return self.model.bos_token_id @property def eos_token_id(self): """end of the sentence token id.""" return self.model.eos_token_id def encode(self, s: str): """Tokenize a prompt. Args: s (str): a prompt Returns: list[int]: token ids """ return self.model.encode(s) def decode(self, t: Sequence[int]): """De-tokenize. Args: t (List[int]): a list of token ids Returns: str: text of decoding tokens """ return self.model.decode(t)