node.cpp 6.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
#include "crt.h"
#include "node.h"
#include "token.h"
#include "scanner.h"
#include "content.h"
#include "parser.h"
#include "scalar.h"
#include "sequence.h"
#include "map.h"
10
#include "aliascontent.h"
11
#include "iterpriv.h"
12
#include "emitter.h"
13
#include <stdexcept>
14
15
16
17
18
19
20
21
22

namespace YAML
{
	// the ordering!
	bool ltnode::operator ()(const Node *pNode1, const Node *pNode2) const
	{
		return *pNode1 < *pNode2;
	}

23
	Node::Node(): m_pContent(0), m_alias(false), m_pIdentity(this), m_referenced(true)
24
25
26
	{
	}

Jesse Beder's avatar
Jesse Beder committed
27
28
29
30
31
32
33
	Node::Node(const Mark& mark, const std::string& anchor, const std::string& tag, const Content *pContent)
	: m_mark(mark), m_anchor(anchor), m_tag(tag), m_pContent(0), m_alias(false), m_pIdentity(this), m_referenced(false)
	{
		if(m_pContent)
			m_pContent = pContent->Clone();
	}

34
35
36
37
38
39
40
41
42
43
	Node::~Node()
	{
		Clear();
	}

	void Node::Clear()
	{
		delete m_pContent;
		m_pContent = 0;
		m_alias = false;
44
45
46
		m_referenced = false;
		m_anchor.clear();
		m_tag.clear();
47
	}
Jesse Beder's avatar
Jesse Beder committed
48
49
50
51
52
53
54
55
	
	std::auto_ptr<Node> Node::Clone() const
	{
		if(m_alias)
			throw std::runtime_error("yaml-cpp: Can't clone alias");  // TODO: what to do about aliases?
		
		return std::auto_ptr<Node> (new Node(m_mark, m_anchor, m_tag, m_pContent));
	}
56
57
58
59
60

	void Node::Parse(Scanner *pScanner, const ParserState& state)
	{
		Clear();

61
62
63
64
		// an empty node *is* a possibility
		if(pScanner->empty())
			return;

65
		// save location
66
		m_mark = pScanner->peek().mark;
67

68
69
		ParseHeader(pScanner, state);

70
71
72
73
74
75
76
77
78
79
80
81
82
83
		// is this an alias? if so, its contents are an alias to
		// a previously defined anchor
		if(m_alias) {
			// the scanner throws an exception if it doesn't know this anchor name
			const Node *pReferencedNode = pScanner->Retrieve(m_anchor);
			m_pIdentity = pReferencedNode;

			// mark the referenced node for the sake of the client code
			pReferencedNode->m_referenced = true;

			// use of an Alias object keeps the referenced content from
			// being deleted twice
			Content *pAliasedContent = pReferencedNode->m_pContent;
			if(pAliasedContent)
84
				m_pContent = new AliasContent(pAliasedContent);
85
			
86
			return;
87
		}
88
89
90

		// now split based on what kind of node we should be
		switch(pScanner->peek().type) {
91
			case Token::SCALAR:
92
93
				m_pContent = new Scalar;
				break;
94
95
			case Token::FLOW_SEQ_START:
			case Token::BLOCK_SEQ_START:
96
97
				m_pContent = new Sequence;
				break;
98
99
			case Token::FLOW_MAP_START:
			case Token::BLOCK_MAP_START:
100
101
				m_pContent = new Map;
				break;
Jesse Beder's avatar
Jesse Beder committed
102
			default:
103
104
105
//				std::stringstream str;
//				str << TokenNames[pScanner->peek().type];
//				throw std::runtime_error(str.str());
Jesse Beder's avatar
Jesse Beder committed
106
				break;
107
		}
108
109
110
111
112
113
114
115

		// Have to save anchor before parsing to allow for aliases as
		// contained node (recursive structure)
		if(!m_anchor.empty())
			pScanner->Save(m_anchor, this);

		if(m_pContent)
			m_pContent->Parse(pScanner, state);
116
117
118
119
120
121
122
123
124
125
126
	}

	// ParseHeader
	// . Grabs any tag, alias, or anchor tokens and deals with them.
	void Node::ParseHeader(Scanner *pScanner, const ParserState& state)
	{
		while(1) {
			if(pScanner->empty())
				return;

			switch(pScanner->peek().type) {
127
128
129
				case Token::TAG: ParseTag(pScanner, state); break;
				case Token::ANCHOR: ParseAnchor(pScanner, state); break;
				case Token::ALIAS: ParseAlias(pScanner, state); break;
130
131
132
133
134
135
136
137
138
				default: return;
			}
		}
	}

	void Node::ParseTag(Scanner *pScanner, const ParserState& state)
	{
		Token& token = pScanner->peek();
		if(m_tag != "")
139
			throw ParserException(token.mark, ErrorMsg::MULTIPLE_TAGS);
140
141
142

		m_tag = state.TranslateTag(token.value);

143
		for(std::size_t i=0;i<token.params.size();i++)
144
145
146
147
			m_tag += token.params[i];
		pScanner->pop();
	}
	
148
	void Node::ParseAnchor(Scanner *pScanner, const ParserState& /*state*/)
149
150
151
	{
		Token& token = pScanner->peek();
		if(m_anchor != "")
152
			throw ParserException(token.mark, ErrorMsg::MULTIPLE_ANCHORS);
153
154
155
156
157
158

		m_anchor = token.value;
		m_alias = false;
		pScanner->pop();
	}

159
	void Node::ParseAlias(Scanner *pScanner, const ParserState& /*state*/)
160
161
162
	{
		Token& token = pScanner->peek();
		if(m_anchor != "")
163
			throw ParserException(token.mark, ErrorMsg::MULTIPLE_ALIASES);
164
		if(m_tag != "")
165
			throw ParserException(token.mark, ErrorMsg::ALIAS_CONTENT);
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

		m_anchor = token.value;
		m_alias = true;
		pScanner->pop();
	}

	CONTENT_TYPE Node::GetType() const
	{
		if(!m_pContent)
			return CT_NONE;

		if(m_pContent->IsScalar())
			return CT_SCALAR;
		else if(m_pContent->IsSequence())
			return CT_SEQUENCE;
		else if(m_pContent->IsMap())
			return CT_MAP;
			
		return CT_NONE;
	}

	// begin
	// Returns an iterator to the beginning of this (sequence or map).
	Iterator Node::begin() const
	{
		if(!m_pContent)
			return Iterator();

		std::vector <Node *>::const_iterator seqIter;
		if(m_pContent->GetBegin(seqIter))
			return Iterator(new IterPriv(seqIter));

		std::map <Node *, Node *, ltnode>::const_iterator mapIter;
		if(m_pContent->GetBegin(mapIter))
			return Iterator(new IterPriv(mapIter));

		return Iterator();
	}

	// end
	// . Returns an iterator to the end of this (sequence or map).
	Iterator Node::end() const
	{
		if(!m_pContent)
			return Iterator();

		std::vector <Node *>::const_iterator seqIter;
		if(m_pContent->GetEnd(seqIter))
			return Iterator(new IterPriv(seqIter));

		std::map <Node *, Node *, ltnode>::const_iterator mapIter;
		if(m_pContent->GetEnd(mapIter))
			return Iterator(new IterPriv(mapIter));

		return Iterator();
	}

	// size
	// . Returns the size of this node, if it's a sequence node.
	// . Otherwise, returns zero.
226
	std::size_t Node::size() const
227
228
229
230
231
232
233
	{
		if(!m_pContent)
			return 0;

		return m_pContent->GetSize();
	}

234
	const Node *Node::FindAtIndex(std::size_t i) const
235
236
	{
		if(!m_pContent)
237
238
239
			return 0;
		
		return m_pContent->GetNode(i);
240
241
	}

242
	bool Node::GetScalar(std::string& s) const
243
	{
244
245
246
247
248
		if(!m_pContent) {
			s = "~";
			return true;
		}
		
249
		return m_pContent->GetScalar(s);
250
251
	}

252
	Emitter& operator << (Emitter& out, const Node& node)
253
	{
254
255
256
257
258
259
260
261
262
263
264
265
266
		// write anchor/alias
		if(node.m_anchor != "") {
			if(node.m_alias)
				out << Alias(node.m_anchor);
			else
				out << Anchor(node.m_anchor);
		}

		// TODO: write tag

		// write content
		if(node.m_pContent)
			node.m_pContent->Write(out);
267
		else if(!node.m_alias)
268
			out << Null;
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
		return out;
	}

	int Node::Compare(const Node& rhs) const
	{
		// Step 1: no content is the smallest
		if(!m_pContent) {
			if(rhs.m_pContent)
				return -1;
			else
				return 0;
		}
		if(!rhs.m_pContent)
			return 1;

		return m_pContent->Compare(rhs.m_pContent);
	}

	bool operator < (const Node& n1, const Node& n2)
	{
		return n1.Compare(n2) < 0;
	}
}