node.cpp 6.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include "crt.h"
#include "node.h"
#include "token.h"
#include "scanner.h"
#include "content.h"
#include "parser.h"
#include "scalar.h"
#include "sequence.h"
#include "map.h"
#include "iterpriv.h"

namespace YAML
{
	// the ordering!
	bool ltnode::operator ()(const Node *pNode1, const Node *pNode2) const
	{
		return *pNode1 < *pNode2;
	}

	Node::Node(): m_pContent(0), m_alias(false)
	{
	}

	Node::~Node()
	{
		Clear();
	}

	void Node::Clear()
	{
		delete m_pContent;
		m_pContent = 0;
		m_alias = false;
	}

	void Node::Parse(Scanner *pScanner, const ParserState& state)
	{
		Clear();

40
41
42
43
		// an empty node *is* a possibility
		if(pScanner->empty())
			return;

44
45
46
47
		// save location
		m_line = pScanner->peek().line;
		m_column = pScanner->peek().column;

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
		ParseHeader(pScanner, state);

		// is this an alias? if so, it can have no content
		if(m_alias)
			return;

		// now split based on what kind of node we should be
		switch(pScanner->peek().type) {
			case TT_SCALAR:
				m_pContent = new Scalar;
				m_pContent->Parse(pScanner, state);
				break;
			case TT_FLOW_SEQ_START:
			case TT_BLOCK_SEQ_START:
			case TT_BLOCK_ENTRY:
				m_pContent = new Sequence;
				m_pContent->Parse(pScanner, state);
				break;
			case TT_FLOW_MAP_START:
			case TT_BLOCK_MAP_START:
				m_pContent = new Map;
				m_pContent->Parse(pScanner, state);
				break;
Jesse Beder's avatar
Jesse Beder committed
71
72
			default:
				break;
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
		}
	}

	// ParseHeader
	// . Grabs any tag, alias, or anchor tokens and deals with them.
	void Node::ParseHeader(Scanner *pScanner, const ParserState& state)
	{
		while(1) {
			if(pScanner->empty())
				return;

			switch(pScanner->peek().type) {
				case TT_TAG: ParseTag(pScanner, state); break;
				case TT_ANCHOR: ParseAnchor(pScanner, state); break;
				case TT_ALIAS: ParseAlias(pScanner, state); break;
				default: return;
			}
		}
	}

	void Node::ParseTag(Scanner *pScanner, const ParserState& state)
	{
		Token& token = pScanner->peek();
		if(m_tag != "")
			throw ParserException(token.line, token.column, ErrorMsg::MULTIPLE_TAGS);

		m_tag = state.TranslateTag(token.value);

		for(unsigned i=0;i<token.params.size();i++)
			m_tag += token.params[i];
		pScanner->pop();
	}
	
	void Node::ParseAnchor(Scanner *pScanner, const ParserState& state)
	{
		Token& token = pScanner->peek();
		if(m_anchor != "")
			throw ParserException(token.line, token.column, ErrorMsg::MULTIPLE_ANCHORS);

		m_anchor = token.value;
		m_alias = false;
		pScanner->pop();
	}

	void Node::ParseAlias(Scanner *pScanner, const ParserState& state)
	{
		Token& token = pScanner->peek();
		if(m_anchor != "")
			throw ParserException(token.line, token.column, ErrorMsg::MULTIPLE_ALIASES);
		if(m_tag != "")
			throw ParserException(token.line, token.column, ErrorMsg::ALIAS_CONTENT);

		m_anchor = token.value;
		m_alias = true;
		pScanner->pop();
	}

	void Node::Write(std::ostream& out, int indent, bool startedLine, bool onlyOneCharOnLine) const
	{
		// write anchor/alias
		if(m_anchor != "") {
			if(m_alias)
				out << std::string("*");
			else
				out << std::string("&");
			out << m_anchor << std::string(" ");
			startedLine = true;
			onlyOneCharOnLine = false;
		}

		// write tag
		if(m_tag != "") {
Jesse Beder's avatar
Jesse Beder committed
145
146
147
148
149
			// put the tag in the "proper" brackets
			if(m_tag.substr(0, 2) == "!<" && m_tag.substr(m_tag.size() - 1) == ">")
				out << m_tag;
			else
				out << std::string("!<") << m_tag << std::string("> ");
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
			startedLine = true;
			onlyOneCharOnLine = false;
		}

		if(!m_pContent) {
			out << std::string("\n");
		} else {
			m_pContent->Write(out, indent, startedLine, onlyOneCharOnLine);
		}
	}

	CONTENT_TYPE Node::GetType() const
	{
		if(!m_pContent)
			return CT_NONE;

		if(m_pContent->IsScalar())
			return CT_SCALAR;
		else if(m_pContent->IsSequence())
			return CT_SEQUENCE;
		else if(m_pContent->IsMap())
			return CT_MAP;
			
		return CT_NONE;
	}

	// begin
	// Returns an iterator to the beginning of this (sequence or map).
	Iterator Node::begin() const
	{
		if(!m_pContent)
			return Iterator();

		std::vector <Node *>::const_iterator seqIter;
		if(m_pContent->GetBegin(seqIter))
			return Iterator(new IterPriv(seqIter));

		std::map <Node *, Node *, ltnode>::const_iterator mapIter;
		if(m_pContent->GetBegin(mapIter))
			return Iterator(new IterPriv(mapIter));

		return Iterator();
	}

	// end
	// . Returns an iterator to the end of this (sequence or map).
	Iterator Node::end() const
	{
		if(!m_pContent)
			return Iterator();

		std::vector <Node *>::const_iterator seqIter;
		if(m_pContent->GetEnd(seqIter))
			return Iterator(new IterPriv(seqIter));

		std::map <Node *, Node *, ltnode>::const_iterator mapIter;
		if(m_pContent->GetEnd(mapIter))
			return Iterator(new IterPriv(mapIter));

		return Iterator();
	}

	// size
	// . Returns the size of this node, if it's a sequence node.
	// . Otherwise, returns zero.
	unsigned Node::size() const
	{
		if(!m_pContent)
			return 0;

		return m_pContent->GetSize();
	}

	const Node& Node::operator [] (unsigned u) const
	{
		if(!m_pContent)
			throw BadDereference();

		Node *pNode = m_pContent->GetNode(u);
		if(pNode)
			return *pNode;

		return GetValue(u);
	}

	const Node& Node::operator [] (int i) const
	{
		if(!m_pContent)
			throw BadDereference();

		Node *pNode = m_pContent->GetNode(i);
		if(pNode)
			return *pNode;

		return GetValue(i);
	}

	///////////////////////////////////////////////////////
	// Extraction
249
250
251
252
	// Note: these Read() functions are identical, but
	// they're not templated because they use a Content virtual
	// function, so we'd have to #include that in node.h, and
	// I don't want to.
253

254
	bool Node::Read(std::string& s) const
255
	{
256
257
		if(!m_pContent)
			return false;
258

259
		return m_pContent->Read(s);
260
261
	}

262
	bool Node::Read(int& i) const
263
	{
264
265
		if(!m_pContent)
			return false;
266

267
		return m_pContent->Read(i);
268
269
	}

270
	bool Node::Read(unsigned& u) const
271
	{
272
273
		if(!m_pContent)
			return false;
274

275
		return m_pContent->Read(u);
276
277
	}

278
	bool Node::Read(long& l) const
279
	{
280
281
		if(!m_pContent)
			return false;
282

283
		return m_pContent->Read(l);
284
285
	}

286
	bool Node::Read(float& f) const
287
	{
288
289
		if(!m_pContent)
			return false;
290

291
		return m_pContent->Read(f);
292
293
	}

294
	bool Node::Read(double& d) const
295
	{
296
297
		if(!m_pContent)
			return false;
298

299
		return m_pContent->Read(d);
300
301
	}

302
	bool Node::Read(char& c) const
303
	{
304
305
		if(!m_pContent)
			return false;
306

307
		return m_pContent->Read(c);
308
309
	}

310
311
312
313
314
315
316
317
	bool Node::Read(bool& b) const
	{
		if(!m_pContent)
			return false;

		return m_pContent->Read(b);
	}

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
	std::ostream& operator << (std::ostream& out, const Node& node)
	{
		node.Write(out, 0, false, false);
		return out;
	}

	int Node::Compare(const Node& rhs) const
	{
		// Step 1: no content is the smallest
		if(!m_pContent) {
			if(rhs.m_pContent)
				return -1;
			else
				return 0;
		}
		if(!rhs.m_pContent)
			return 1;

		return m_pContent->Compare(rhs.m_pContent);
	}

	bool operator < (const Node& n1, const Node& n2)
	{
		return n1.Compare(n2) < 0;
	}
}