CrnnNet.cpp 5.16 KB
Newer Older
benjaminwan's avatar
benjaminwan committed
1
2
3
4
5
6
7
8
9
#include "CrnnNet.h"
#include "OcrUtils.h"
#include <fstream>
#include <numeric>

CrnnNet::CrnnNet() {}

CrnnNet::~CrnnNet() {
    delete session;
10
11
    inputNames.clear();
    outputNames.clear();
benjaminwan's avatar
benjaminwan committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
}

void CrnnNet::setNumThread(int numOfThread) {
    numThread = numOfThread;
    //===session options===
    // Sets the number of threads used to parallelize the execution within nodes
    // A value of 0 means ORT will pick a default
    //sessionOptions.SetIntraOpNumThreads(numThread);
    //set OMP_NUM_THREADS=16

    // Sets the number of threads used to parallelize the execution of the graph (across nodes)
    // If sequential execution is enabled this value is ignored
    // A value of 0 means ORT will pick a default
    sessionOptions.SetInterOpNumThreads(numThread);

    // Sets graph optimization level
    // ORT_DISABLE_ALL -> To disable all optimizations
    // ORT_ENABLE_BASIC -> To enable basic optimizations (Such as redundant node removals)
    // ORT_ENABLE_EXTENDED -> To enable extended optimizations (Includes level 1 + more complex optimizations like node fusions)
    // ORT_ENABLE_ALL -> To Enable All possible opitmizations
    sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
}

void CrnnNet::initModel(const std::string &pathStr, const std::string &keysPath) {
#ifdef _WIN32
    std::wstring crnnPath = strToWstr(pathStr);
    session = new Ort::Session(env, crnnPath.c_str(), sessionOptions);
#else
    session = new Ort::Session(env, pathStr.c_str(), sessionOptions);
#endif
    inputNames = getInputNames(session);
    outputNames = getOutputNames(session);

    //load keys
    std::ifstream in(keysPath.c_str());
    std::string line;
    if (in) {
        while (getline(in, line)) {// line中不包括每行的换行符
            keys.push_back(line);
        }
    } else {
        printf("The keys.txt file was not found\n");
        return;
    }
benjaminwan's avatar
benjaminwan committed
56
57
58
    keys.insert(keys.begin(), "#");
    keys.emplace_back(" ");
    printf("total keys size(%lu)\n", keys.size());
benjaminwan's avatar
benjaminwan committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
}

template<class ForwardIterator>
inline static size_t argmax(ForwardIterator first, ForwardIterator last) {
    return std::distance(first, std::max_element(first, last));
}

TextLine CrnnNet::scoreToTextLine(const std::vector<float> &outputData, int h, int w) {
    int keySize = keys.size();
    std::string strRes;
    std::vector<float> scores;
    int lastIndex = 0;
    int maxIndex;
    float maxValue;

    for (int i = 0; i < h; i++) {
75
76
77
78
        int start = i * w;
        int stop = (i + 1) * w - 1;
        maxIndex = int(argmax(&outputData[start], &outputData[stop]));
        maxValue = float(*std::max_element(&outputData[start], &outputData[stop]));
benjaminwan's avatar
benjaminwan committed
79
80
81

        if (maxIndex > 0 && maxIndex < keySize && (!(i > 0 && maxIndex == lastIndex))) {
            scores.emplace_back(maxValue);
benjaminwan's avatar
benjaminwan committed
82
            strRes.append(keys[maxIndex]);
benjaminwan's avatar
benjaminwan committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        }
        lastIndex = maxIndex;
    }
    return {strRes, scores};
}

TextLine CrnnNet::getTextLine(const cv::Mat &src) {
    float scale = (float) dstHeight / (float) src.rows;
    int dstWidth = int((float) src.cols * scale);

    cv::Mat srcResize;
    resize(src, srcResize, cv::Size(dstWidth, dstHeight));

    std::vector<float> inputTensorValues = substractMeanNormalize(srcResize, meanValues, normValues);

    std::array<int64_t, 4> inputShape{1, srcResize.channels(), srcResize.rows, srcResize.cols};

    auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);

    Ort::Value inputTensor = Ort::Value::CreateTensor<float>(memoryInfo, inputTensorValues.data(),
                                                             inputTensorValues.size(), inputShape.data(),
                                                             inputShape.size());
    assert(inputTensor.IsTensor());

    auto outputTensor = session->Run(Ort::RunOptions{nullptr}, inputNames.data(), &inputTensor,
                                     inputNames.size(), outputNames.data(), outputNames.size());

    assert(outputTensor.size() == 1 && outputTensor.front().IsTensor());

    std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();

    int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1,
                                          std::multiplies<int64_t>());

    float *floatArray = outputTensor.front().GetTensorMutableData<float>();
    std::vector<float> outputData(floatArray, floatArray + outputCount);
    return scoreToTextLine(outputData, outputShape[1], outputShape[2]);
}

std::vector<TextLine> CrnnNet::getTextLines(std::vector<cv::Mat> &partImg, const char *path, const char *imgName) {
    int size = partImg.size();
    std::vector<TextLine> textLines(size);
    for (int i = 0; i < size; ++i) {
        //OutPut DebugImg
        if (isOutputDebugImg) {
            std::string debugImgFile = getDebugImgFilePath(path, imgName, i, "-debug-");
            saveImg(partImg[i], debugImgFile.c_str());
        }

        //getTextLine
        double startCrnnTime = getCurrentTime();
        TextLine textLine = getTextLine(partImg[i]);
        double endCrnnTime = getCurrentTime();
        textLine.time = endCrnnTime - startCrnnTime;
        textLines[i] = textLine;
    }
    return textLines;
}