CrnnNet.cpp 5.08 KB
Newer Older
benjaminwan's avatar
benjaminwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include "CrnnNet.h"
#include "OcrUtils.h"
#include <fstream>
#include <numeric>

CrnnNet::CrnnNet() {}

CrnnNet::~CrnnNet() {
    delete session;
    for (auto name: inputNames) {
        free(name);
    }
    for (auto name: outputNames) {
        free(name);
    }
}

void CrnnNet::setNumThread(int numOfThread) {
    numThread = numOfThread;
    //===session options===
    // Sets the number of threads used to parallelize the execution within nodes
    // A value of 0 means ORT will pick a default
    //sessionOptions.SetIntraOpNumThreads(numThread);
    //set OMP_NUM_THREADS=16

    // Sets the number of threads used to parallelize the execution of the graph (across nodes)
    // If sequential execution is enabled this value is ignored
    // A value of 0 means ORT will pick a default
    sessionOptions.SetInterOpNumThreads(numThread);

    // Sets graph optimization level
    // ORT_DISABLE_ALL -> To disable all optimizations
    // ORT_ENABLE_BASIC -> To enable basic optimizations (Such as redundant node removals)
    // ORT_ENABLE_EXTENDED -> To enable extended optimizations (Includes level 1 + more complex optimizations like node fusions)
    // ORT_ENABLE_ALL -> To Enable All possible opitmizations
    sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
}

void CrnnNet::initModel(const std::string &pathStr, const std::string &keysPath) {
#ifdef _WIN32
    std::wstring crnnPath = strToWstr(pathStr);
    session = new Ort::Session(env, crnnPath.c_str(), sessionOptions);
#else
    session = new Ort::Session(env, pathStr.c_str(), sessionOptions);
#endif
    inputNames = getInputNames(session);
    outputNames = getOutputNames(session);

    //load keys
    std::ifstream in(keysPath.c_str());
    std::string line;
    if (in) {
        while (getline(in, line)) {// line中不包括每行的换行符
            keys.push_back(line);
        }
    } else {
        printf("The keys.txt file was not found\n");
        return;
    }
}

template<class ForwardIterator>
inline static size_t argmax(ForwardIterator first, ForwardIterator last) {
    return std::distance(first, std::max_element(first, last));
}

TextLine CrnnNet::scoreToTextLine(const std::vector<float> &outputData, int h, int w) {
    int keySize = keys.size();
    std::string strRes;
    std::vector<float> scores;
    int lastIndex = 0;
    int maxIndex;
    float maxValue;

    for (int i = 0; i < h; i++) {
        maxIndex = int(argmax(&outputData[i * w], &outputData[(i + 1) * w]));
        maxValue = float(*std::max_element(&outputData[i * w], &outputData[(i + 1) * w]));

        if (maxIndex > 0 && maxIndex < keySize && (!(i > 0 && maxIndex == lastIndex))) {
            scores.emplace_back(maxValue);
            strRes.append(keys[maxIndex - 1]);
        }
        lastIndex = maxIndex;
    }
    return {strRes, scores};
}

TextLine CrnnNet::getTextLine(const cv::Mat &src) {
    float scale = (float) dstHeight / (float) src.rows;
    int dstWidth = int((float) src.cols * scale);

    cv::Mat srcResize;
    resize(src, srcResize, cv::Size(dstWidth, dstHeight));

    std::vector<float> inputTensorValues = substractMeanNormalize(srcResize, meanValues, normValues);

    std::array<int64_t, 4> inputShape{1, srcResize.channels(), srcResize.rows, srcResize.cols};

    auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);

    Ort::Value inputTensor = Ort::Value::CreateTensor<float>(memoryInfo, inputTensorValues.data(),
                                                             inputTensorValues.size(), inputShape.data(),
                                                             inputShape.size());
    assert(inputTensor.IsTensor());

    auto outputTensor = session->Run(Ort::RunOptions{nullptr}, inputNames.data(), &inputTensor,
                                     inputNames.size(), outputNames.data(), outputNames.size());

    assert(outputTensor.size() == 1 && outputTensor.front().IsTensor());

    std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();

    int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1,
                                          std::multiplies<int64_t>());

    float *floatArray = outputTensor.front().GetTensorMutableData<float>();
    std::vector<float> outputData(floatArray, floatArray + outputCount);
    return scoreToTextLine(outputData, outputShape[1], outputShape[2]);
}

std::vector<TextLine> CrnnNet::getTextLines(std::vector<cv::Mat> &partImg, const char *path, const char *imgName) {
    int size = partImg.size();
    std::vector<TextLine> textLines(size);
    for (int i = 0; i < size; ++i) {
        //OutPut DebugImg
        if (isOutputDebugImg) {
            std::string debugImgFile = getDebugImgFilePath(path, imgName, i, "-debug-");
            saveImg(partImg[i], debugImgFile.c_str());
        }

        //getTextLine
        double startCrnnTime = getCurrentTime();
        TextLine textLine = getTextLine(partImg[i]);
        double endCrnnTime = getCurrentTime();
        textLine.time = endCrnnTime - startCrnnTime;
        textLines[i] = textLine;
    }
    return textLines;
}