"docs/archive_en_US/Tutorial/QuickStart.md" did not exist on "39782f1209f0855f49318b9e0fa042fdcf45ba7f"
Commit f7079e51 authored by Paul's avatar Paul
Browse files

Merge

parents 79eac1b8 f6e22d56
...@@ -32,6 +32,10 @@ Disable fast math optimization ...@@ -32,6 +32,10 @@ Disable fast math optimization
Perform an exhaustive search to find the fastest version of generated kernels for selected backend Perform an exhaustive search to find the fastest version of generated kernels for selected backend
.. options:: --split-single-dyn-dim
Enable the split single dynamic dimension pass
.. option:: --fp16 .. option:: --fp16
Quantize for fp16 Quantize for fp16
......
...@@ -24,7 +24,7 @@ Load as MIGraphX JSON ...@@ -24,7 +24,7 @@ Load as MIGraphX JSON
.. option:: --batch [unsigned int] (Default: 1) .. option:: --batch [unsigned int] (Default: 1)
Set batch size for model For a static model, set batch size. For a dynamic batch model, sets the batch size at runtime.
.. option:: --nhwc .. option:: --nhwc
...@@ -46,6 +46,14 @@ Trim instructions from the end (Default: 0) ...@@ -46,6 +46,14 @@ Trim instructions from the end (Default: 0)
Dim of a parameter (format: "@name d1 d2 dn") Dim of a parameter (format: "@name d1 d2 dn")
.. options:: --dyn-input-dim [std::vector<std::string>]
Set dynamic dimensions of a parameter using JSON formatting (format "@name" "dynamic_dimension_json")
.. options:: --default-dyn-dim
Set the default dynamic dimension (format {min:x, max:y, optimals:[o1,o2,...]})
.. option:: --optimize, -O .. option:: --optimize, -O
Optimize when reading Optimize when reading
......
...@@ -29,7 +29,7 @@ See below for a comprehensive list of commands and option arguments, as well as ...@@ -29,7 +29,7 @@ See below for a comprehensive list of commands and option arguments, as well as
| --tf | Load file as a tensorflow graph | | --tf | Load file as a tensorflow graph |
| --migraphx | Load file as a migraphx graph | | --migraphx | Load file as a migraphx graph |
| --migraphx-json | Load file as a migraphx JSON graph | | --migraphx-json | Load file as a migraphx JSON graph |
| --batch | Set batch size for the model | | --batch | For a static model, set batch size. For a dynamic batch model, sets the batch size at runtime.|
| --nhwc | Treat tensorflow format as nhwc | | --nhwc | Treat tensorflow format as nhwc |
| --nchw | Treat tensorflow format as nchw | | --nchw | Treat tensorflow format as nchw |
| --skip-unknown-operators | Skip unknown operators when parsing and continue to parse | | --skip-unknown-operators | Skip unknown operators when parsing and continue to parse |
...@@ -44,12 +44,16 @@ See below for a comprehensive list of commands and option arguments, as well as ...@@ -44,12 +44,16 @@ See below for a comprehensive list of commands and option arguments, as well as
| --output \| -o | Output to file | | --output \| -o | Output to file |
| --fill0 | Fill parameter with 0s | | --fill0 | Fill parameter with 0s |
| --fill1 | Fill parameter with 1s | | --fill1 | Fill parameter with 1s |
| --input-dim | Set static dimensions of a parameter |
| --dyn-input-dim | Set dynamic dimensions of a parameter |
| --default-dyn-dim | Set default dynamic dimension |
| --gpu | Compile on the gpu | | --gpu | Compile on the gpu |
| --cpu | Compile on the cpu | | --cpu | Compile on the cpu |
| --ref | Compile on the reference implementation | | --ref | Compile on the reference implementation |
| --enable-offload-copy | Enable implicit offload copying | | --enable-offload-copy | Enable implicit offload copying |
| --disable-fast-math | Disable fast math optimization | | --disable-fast-math | Disable fast math optimization |
| --exhaustive-tune | Enable exhaustive search to find fastest kernel | | --exhaustive-tune | Enable exhaustive search to find fastest kernel |
| --split-single-dyn-dim | Enable split_single_dyn_dim compiler pass |
| --fp16 | Quantize for fp16 | | --fp16 | Quantize for fp16 |
| --int8 | Quantize for int8 | | --int8 | Quantize for int8 |
| --tolerance | Tolerance for errors | | --tolerance | Tolerance for errors |
......
...@@ -50,6 +50,7 @@ add_library(migraphx ...@@ -50,6 +50,7 @@ add_library(migraphx
env.cpp env.cpp
file_buffer.cpp file_buffer.cpp
fuse_pointwise.cpp fuse_pointwise.cpp
fuse_reduce.cpp
generate.cpp generate.cpp
inline_module.cpp inline_module.cpp
insert_pad.cpp insert_pad.cpp
...@@ -73,6 +74,7 @@ add_library(migraphx ...@@ -73,6 +74,7 @@ add_library(migraphx
process.cpp process.cpp
program.cpp program.cpp
propagate_constant.cpp propagate_constant.cpp
promote_literals.cpp
quantization.cpp quantization.cpp
quantize_fp16.cpp quantize_fp16.cpp
quantize_int8.cpp quantize_int8.cpp
...@@ -91,6 +93,7 @@ add_library(migraphx ...@@ -91,6 +93,7 @@ add_library(migraphx
shape.cpp shape.cpp
simplify_algebra.cpp simplify_algebra.cpp
simplify_reshapes.cpp simplify_reshapes.cpp
split_single_dyn_dim.cpp
tmp_dir.cpp tmp_dir.cpp
value.cpp value.cpp
verify_args.cpp verify_args.cpp
......
...@@ -89,8 +89,8 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha ...@@ -89,8 +89,8 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
} }
else if(a == 1 or b == 1) else if(a == 1 or b == 1)
{ {
// setting opt to 0, may need to be changed // setting optimals to empty, may need to be changed
return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max), 0}; return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max)};
} }
else else
{ {
...@@ -148,10 +148,8 @@ shape common_shape(const std::vector<shape>& shapes) ...@@ -148,10 +148,8 @@ shape common_shape(const std::vector<shape>& shapes)
return {compute_common_types(shapes), compute_common_lens(shapes)}; return {compute_common_types(shapes), compute_common_lens(shapes)};
} }
instruction_ref insert_common_op(module& m, std::vector<instruction_ref>
instruction_ref ins, insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs)
const operation& op,
std::vector<instruction_ref> inputs)
{ {
if(std::any_of( if(std::any_of(
inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); })) inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
...@@ -210,7 +208,20 @@ instruction_ref insert_common_op(module& m, ...@@ -210,7 +208,20 @@ instruction_ref insert_common_op(module& m,
return input; return input;
}); });
} }
return m.insert_instruction(ins, op, inputs); return inputs;
}
std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs)
{
return insert_common_args(m, m.end(), std::move(inputs));
}
instruction_ref insert_common_op(module& m,
instruction_ref ins,
const operation& op,
std::vector<instruction_ref> inputs)
{
return m.insert_instruction(ins, op, insert_common_args(m, ins, std::move(inputs)));
} }
instruction_ref add_common_op(module& m, const operation& op, std::vector<instruction_ref> inputs) instruction_ref add_common_op(module& m, const operation& op, std::vector<instruction_ref> inputs)
......
...@@ -106,6 +106,13 @@ cpp_generator::function& cpp_generator::function::set_generic_types(const module ...@@ -106,6 +106,13 @@ cpp_generator::function& cpp_generator::function::set_generic_types(const module
return *this; return *this;
} }
cpp_generator::function& cpp_generator::function::add_generic_param(const std::string& pname)
{
params.push_back({pname, "T" + pname});
tparams.push_back("class T" + pname);
return *this;
}
struct cpp_generator_impl struct cpp_generator_impl
{ {
std::stringstream fs{}; std::stringstream fs{};
...@@ -182,7 +189,8 @@ std::string cpp_generator::generate_point_op(const operation& op, ...@@ -182,7 +189,8 @@ std::string cpp_generator::generate_point_op(const operation& op,
std::string cpp_generator::str() const { return impl->fs.str(); } std::string cpp_generator::str() const { return impl->fs.str(); }
cpp_generator::function cpp_generator::generate_module(const module& m) cpp_generator::function cpp_generator::generate_module(const module& m,
const generate_module_callback& g)
{ {
function f; function f;
auto name = transform_string(m.name(), [](char c) { auto name = transform_string(m.name(), [](char c) {
...@@ -195,13 +203,7 @@ cpp_generator::function cpp_generator::generate_module(const module& m) ...@@ -195,13 +203,7 @@ cpp_generator::function cpp_generator::generate_module(const module& m)
if(ins->name() == "@literal") if(ins->name() == "@literal")
return shape::cpp_type(ins->get_shape().type()) + "(" + return shape::cpp_type(ins->get_shape().type()) + "(" +
ins->get_literal().to_string() + ")"; ins->get_literal().to_string() + ")";
std::vector<std::string> args; auto s = g(ins, names);
std::transform(ins->inputs().begin(),
ins->inputs().end(),
std::back_inserter(args),
[&](auto i) { return names.at(i); });
auto s = this->generate_point_op(ins->get_operator(), args);
if(impl->fresult) if(impl->fresult)
return impl->fresult(ins->get_shape()) + '(' + s + ')'; return impl->fresult(ins->get_shape()) + '(' + s + ')';
else else
...@@ -210,6 +212,24 @@ cpp_generator::function cpp_generator::generate_module(const module& m) ...@@ -210,6 +212,24 @@ cpp_generator::function cpp_generator::generate_module(const module& m)
return f; return f;
} }
std::vector<std::string>
cpp_generator::to_args(const std::vector<instruction_ref>& inputs,
const std::unordered_map<instruction_ref, std::string>& names)
{
std::vector<std::string> args;
std::transform(inputs.begin(), inputs.end(), std::back_inserter(args), [&](auto i) {
return names.at(i);
});
return args;
}
cpp_generator::function cpp_generator::generate_module(const module& m)
{
return this->generate_module(m, [&](auto ins, const auto& names) {
return this->generate_point_op(ins->get_operator(), to_args(ins->inputs(), names));
});
}
std::string cpp_generator::create_function(const cpp_generator::function& f) std::string cpp_generator::create_function(const cpp_generator::function& f)
{ {
impl->function_count++; impl->function_count++;
......
...@@ -148,13 +148,21 @@ struct value_parser ...@@ -148,13 +148,21 @@ struct value_parser
template <MIGRAPHX_REQUIRES(not std::is_enum<T>{} and not is_multi_value<T>{})> template <MIGRAPHX_REQUIRES(not std::is_enum<T>{} and not is_multi_value<T>{})>
static T apply(const std::string& x) static T apply(const std::string& x)
{ {
T result; // handle whitespace in string
std::stringstream ss; if constexpr(std::is_same<T, std::string>{})
ss.str(x); {
ss >> result; return x;
if(ss.fail()) }
throw std::runtime_error("Failed to parse '" + x + "' as " + type_name<T>::apply()); else
return result; {
T result;
std::stringstream ss;
ss.str(x);
ss >> result;
if(ss.fail())
throw std::runtime_error("Failed to parse '" + x + "' as " + type_name<T>::apply());
return result;
}
} }
template <MIGRAPHX_REQUIRES(std::is_enum<T>{} and not is_multi_value<T>{})> template <MIGRAPHX_REQUIRES(std::is_enum<T>{} and not is_multi_value<T>{})>
......
...@@ -33,6 +33,7 @@ ...@@ -33,6 +33,7 @@
#include <migraphx/tf.hpp> #include <migraphx/tf.hpp>
#include <migraphx/onnx.hpp> #include <migraphx/onnx.hpp>
#include <migraphx/stringutils.hpp> #include <migraphx/stringutils.hpp>
#include <migraphx/convert_to_json.hpp>
#include <migraphx/load_save.hpp> #include <migraphx/load_save.hpp>
#include <migraphx/json.hpp> #include <migraphx/json.hpp>
#include <migraphx/version.h> #include <migraphx/version.h>
...@@ -68,7 +69,9 @@ struct loader ...@@ -68,7 +69,9 @@ struct loader
bool brief = false; bool brief = false;
std::string output_type; std::string output_type;
std::string output; std::string output;
std::string default_dyn_dim;
std::vector<std::string> param_dims; std::vector<std::string> param_dims;
std::vector<std::string> dyn_param_dims;
std::vector<std::string> output_names; std::vector<std::string> output_names;
void parse(argument_parser& ap) void parse(argument_parser& ap)
...@@ -83,7 +86,11 @@ struct loader ...@@ -83,7 +86,11 @@ struct loader
ap(file_type, {"--tf"}, ap.help("Load as tensorflow"), ap.set_value("tf")); ap(file_type, {"--tf"}, ap.help("Load as tensorflow"), ap.set_value("tf"));
ap(file_type, {"--migraphx"}, ap.help("Load as MIGraphX"), ap.set_value("migraphx")); ap(file_type, {"--migraphx"}, ap.help("Load as MIGraphX"), ap.set_value("migraphx"));
ap(file_type, {"--migraphx-json"}, ap.help("Load as MIGraphX JSON"), ap.set_value("json")); ap(file_type, {"--migraphx-json"}, ap.help("Load as MIGraphX JSON"), ap.set_value("json"));
ap(batch, {"--batch"}, ap.help("Set batch size for model")); ap(batch,
{"--batch"},
ap.help("For a static model, sets default_dim_value size (commonly batch size). For a "
"dynamic batch model, sets the batch "
"size at runtime."));
ap(is_nhwc, {"--nhwc"}, ap.help("Treat tensorflow format as nhwc"), ap.set_value(true)); ap(is_nhwc, {"--nhwc"}, ap.help("Treat tensorflow format as nhwc"), ap.set_value(true));
ap(skip_unknown_operators, ap(skip_unknown_operators,
{"--skip-unknown-operators"}, {"--skip-unknown-operators"},
...@@ -96,7 +103,16 @@ struct loader ...@@ -96,7 +103,16 @@ struct loader
ap.help("Dim of a parameter (format: \"@name d1 d2 dn\")"), ap.help("Dim of a parameter (format: \"@name d1 d2 dn\")"),
ap.append(), ap.append(),
ap.nargs(2)); ap.nargs(2));
ap(dyn_param_dims,
{"--dyn-input-dim"},
ap.help("Dynamic dimensions of a parameter (format: \"@name_1\" \"[{min:x, max:y, "
"optimals:[o1,o2,...]}, dim2,dim3, ...]\", \"@name_2\", ... You can supply a "
"single integer value for a dimension to specify it as fixed."),
ap.append(),
ap.nargs(2));
ap(default_dyn_dim,
{"--default-dyn-dim"},
ap.help("Default dynamic dimension (format: \"{min:x, max:y, optimals:[o1,o2]}\")."));
ap(output_names, ap(output_names,
{"--output-names"}, {"--output-names"},
ap.help("Names of node output (format: \"name_1 name_2 name_n\")"), ap.help("Names of node output (format: \"name_1 name_2 name_n\")"),
...@@ -147,6 +163,40 @@ struct loader ...@@ -147,6 +163,40 @@ struct loader
return map_input_dims; return map_input_dims;
} }
static auto parse_dyn_dims_json(const std::string& dd_json)
{
// expecting a json string like "[{min:1,max:64,optimals:[1,2,4,8]},3,224,224]"
auto v = from_json_string(convert_to_json(dd_json));
std::vector<migraphx::shape::dynamic_dimension> dyn_dims;
std::transform(v.begin(), v.end(), std::back_inserter(dyn_dims), [&](auto x) {
if(x.is_object())
return from_value<migraphx::shape::dynamic_dimension>(x);
auto d = x.template to<std::size_t>();
return migraphx::shape::dynamic_dimension{d, d};
});
return dyn_dims;
}
static auto parse_dyn_dims_map(const std::vector<std::string>& param_dyn_dims)
{
// expecting vector of strings formatted like
// {"@param_name_0", "dd_json_0", "@param_name_1", "dd_json_1", ...}
std::unordered_map<std::string, std::vector<shape::dynamic_dimension>> map_dyn_input_dims;
std::string name = "";
for(auto&& x : param_dyn_dims)
{
if(x[0] == '@')
{
name = x.substr(1);
}
else
{
map_dyn_input_dims[name] = parse_dyn_dims_json(x);
}
}
return map_dyn_input_dims;
}
static auto parse_output_names(const std::vector<std::string>& output_names_info) static auto parse_output_names(const std::vector<std::string>& output_names_info)
{ {
std::vector<std::string> output_node_names; std::vector<std::string> output_node_names;
...@@ -158,13 +208,44 @@ struct loader ...@@ -158,13 +208,44 @@ struct loader
return output_node_names; return output_node_names;
} }
tf_options get_tf_options() const
{
auto map_input_dims = parse_param_dims(param_dims);
auto output_node_names = parse_output_names(output_names);
tf_options options;
options.is_nhwc = is_nhwc;
options.batch_size = batch;
options.map_input_dims = map_input_dims;
options.output_node_names = output_node_names;
return options;
}
onnx_options get_onnx_options() const
{
auto map_input_dims = parse_param_dims(param_dims);
auto map_dyn_input_dims = parse_dyn_dims_map(dyn_param_dims);
onnx_options options;
if(default_dyn_dim.empty())
{
options.default_dim_value = batch;
}
else
{
auto v = from_json_string(convert_to_json(default_dyn_dim));
options.default_dyn_dim_value = from_value<migraphx::shape::dynamic_dimension>(v);
}
options.skip_unknown_operators = skip_unknown_operators;
options.print_program_on_error = true;
options.map_input_dims = map_input_dims;
options.map_dyn_input_dims = map_dyn_input_dims;
return options;
}
program load() program load()
{ {
program p; program p;
if(model.empty()) if(model.empty())
{ {
auto map_input_dims = parse_param_dims(param_dims);
auto output_node_names = parse_output_names(output_names);
if(file_type.empty()) if(file_type.empty())
{ {
if(ends_with(file, ".onnx")) if(ends_with(file, ".onnx"))
...@@ -179,16 +260,11 @@ struct loader ...@@ -179,16 +260,11 @@ struct loader
std::cout << "Reading: " << file << std::endl; std::cout << "Reading: " << file << std::endl;
if(file_type == "onnx") if(file_type == "onnx")
{ {
onnx_options options; p = parse_onnx(file, get_onnx_options());
options.default_dim_value = batch;
options.skip_unknown_operators = skip_unknown_operators;
options.print_program_on_error = true;
options.map_input_dims = map_input_dims;
p = parse_onnx(file, options);
} }
else if(file_type == "tf") else if(file_type == "tf")
{ {
p = parse_tf(file, tf_options{is_nhwc, batch, map_input_dims, output_node_names}); p = parse_tf(file, get_tf_options());
} }
else if(file_type == "json") else if(file_type == "json")
{ {
...@@ -289,14 +365,21 @@ struct program_params ...@@ -289,14 +365,21 @@ struct program_params
ap(fill1, {"--fill1"}, ap.help("Fill parameter with 1s"), ap.append(), ap.nargs(2)); ap(fill1, {"--fill1"}, ap.help("Fill parameter with 1s"), ap.append(), ap.nargs(2));
} }
auto generate(const program& p, const target& t, bool offload) auto generate(const program& p, const target& t, bool offload, unsigned batch)
{ {
parameter_map m; parameter_map m;
auto param_shapes = p.get_parameter_shapes();
std::unordered_map<std::string, shape> static_param_shapes;
std::transform(
param_shapes.cbegin(),
param_shapes.cend(),
std::inserter(static_param_shapes, static_param_shapes.end()),
[&](const auto& x) { return std::make_pair(x.first, x.second.to_static(batch)); });
for(auto&& s : fill0) for(auto&& s : fill0)
m[s] = fill_argument(p.get_parameter_shape(s), 0); m[s] = fill_argument(static_param_shapes.at(s), 0);
for(auto&& s : fill1) for(auto&& s : fill1)
m[s] = fill_argument(p.get_parameter_shape(s), 1); m[s] = fill_argument(static_param_shapes.at(s), 1);
fill_param_map(m, p, t, offload); fill_param_map(m, static_param_shapes, t, offload);
return m; return m;
} }
}; };
...@@ -353,13 +436,18 @@ struct compiler ...@@ -353,13 +436,18 @@ struct compiler
{"--exhaustive-tune"}, {"--exhaustive-tune"},
ap.help("Exhastively search for best tuning parameters for kernels"), ap.help("Exhastively search for best tuning parameters for kernels"),
ap.set_value(true)); ap.set_value(true));
ap(co.split_single_dyn_dim,
{"--split-single-dyn-dim"},
ap.help("If there is a single non-fixed dynamic dimension in the model, then split to "
"static submodules"),
ap.set_value(true));
ap(quantize, {"--fp16"}, ap.help("Quantize for fp16"), ap.set_value(precision::fp16)); ap(quantize, {"--fp16"}, ap.help("Quantize for fp16"), ap.set_value(precision::fp16));
ap(quantize, {"--int8"}, ap.help("Quantize for int8"), ap.set_value(precision::int8)); ap(quantize, {"--int8"}, ap.help("Quantize for int8"), ap.set_value(precision::int8));
} }
auto params(const program& p) auto params(const program& p)
{ {
return parameters.generate(p, ct.get_target(), co.offload_copy); return parameters.generate(p, ct.get_target(), co.offload_copy, l.batch);
} }
program compile() program compile()
...@@ -432,7 +520,7 @@ struct verify : command<verify> ...@@ -432,7 +520,7 @@ struct verify : command<verify>
std::cout << p << std::endl; std::cout << p << std::endl;
auto t = c.ct.get_target(); auto t = c.ct.get_target();
auto m = c.parameters.generate(p, t, true); auto m = c.parameters.generate(p, t, true, c.l.batch);
if(per_instruction) if(per_instruction)
{ {
......
...@@ -39,36 +39,25 @@ auto get_hash(const T& x) ...@@ -39,36 +39,25 @@ auto get_hash(const T& x)
return std::hash<T>{}(x); return std::hash<T>{}(x);
} }
parameter_map fill_param_map(parameter_map& m, const program& p, const target& t, bool offload) parameter_map fill_param_map(parameter_map& m,
const std::unordered_map<std::string, shape>& param_shapes,
const target& t,
bool offload)
{ {
for(auto&& x : p.get_parameter_shapes()) for(auto&& x : param_shapes)
{ {
argument& arg = m[x.first]; argument& arg = m[x.first];
if(arg.empty()) if(arg.empty())
{
assert(not x.second.dynamic());
arg = generate_argument(x.second, get_hash(x.first)); arg = generate_argument(x.second, get_hash(x.first));
}
if(not offload) if(not offload)
arg = t.copy_to(arg); arg = t.copy_to(arg);
} }
return m; return m;
} }
parameter_map fill_param_map(parameter_map& m, const program& p, bool gpu)
{
for(auto&& x : p.get_parameter_shapes())
{
argument& arg = m[x.first];
if(arg.empty())
arg = generate_argument(x.second, get_hash(x.first));
#ifdef HAVE_GPU
if(gpu)
arg = gpu::to_gpu(arg);
#else
(void)gpu;
#endif
}
return m;
}
parameter_map create_param_map(const program& p, const target& t, bool offload) parameter_map create_param_map(const program& p, const target& t, bool offload)
{ {
parameter_map m; parameter_map m;
......
...@@ -30,8 +30,10 @@ namespace migraphx { ...@@ -30,8 +30,10 @@ namespace migraphx {
namespace driver { namespace driver {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
parameter_map parameter_map fill_param_map(parameter_map& m,
fill_param_map(parameter_map& m, const program& p, const target& t, bool offload = false); const std::unordered_map<std::string, shape>& param_shapes,
const target& t,
bool offload = false);
parameter_map create_param_map(const program& p, const target& t, bool offload = false); parameter_map create_param_map(const program& p, const target& t, bool offload = false);
parameter_map fill_param_map(parameter_map& m, const program& p, bool gpu); parameter_map fill_param_map(parameter_map& m, const program& p, bool gpu);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/fuse_reduce.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/register_op.hpp>
#include <iterator>
#include <map>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct fused_reduce
{
std::vector<std::int64_t> axes{};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axes, "axes"));
}
shape compute_shape(const std::vector<shape>& inputs, std::vector<module_ref> mods) const
{
if(mods.size() != 1)
MIGRAPHX_THROW("should have one submodule.");
auto* sm = mods.front();
if(sm->get_output_shapes().size() != 1)
MIGRAPHX_THROW("Only one output supported");
auto names = sm->get_parameter_names();
check_shapes{inputs, *this}.has(names.size()).same_ndims();
std::sort(names.begin(), names.end());
auto shapes = sm->get_parameter_shapes();
// Check dimension matches for each input
if(not equal(names, inputs, [&](const auto& name, const auto& input) {
return shapes.at(name).lens() == input.lens();
}))
MIGRAPHX_THROW("Dimenstion does not match the submodule.");
const auto& s = inputs.at(0);
auto lens = s.lens();
if(lens != sm->get_output_shapes().front().lens())
{
for(const auto& axis : axes)
{
lens[axis] = 1;
}
}
return shape::from_permutation(
sm->get_output_shapes().front().type(), lens, find_permutation(inputs));
}
std::string name() const { return "fused_reduce"; }
};
MIGRAPHX_REGISTER_OP(fused_reduce);
static std::unordered_map<instruction_ref, instruction_ref>
get_ins_param_map(const std::vector<instruction_ref>& inputs, const_module_ref sm)
{
std::unordered_map<instruction_ref, instruction_ref> result;
auto names = sm->get_parameter_names();
std::sort(names.begin(), names.end());
assert(names.size() == inputs.size());
std::transform(names.begin(),
names.end(),
inputs.begin(),
std::inserter(result, result.end()),
[&](const auto& name, auto input) {
return std::make_pair(input, sm->get_parameter(name));
});
return result;
}
static void insert_params(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
auto n = sm->get_parameter_shapes().size();
for(auto input : ins->inputs())
{
if(contains(map_ins, input))
continue;
auto s = shape{input->get_shape().type(), input->get_shape().lens()};
map_ins[input] = sm->add_parameter("x" + std::to_string(n++), s);
}
}
static auto insert_ins_in_submodule(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
insert_params(sm, ins, map_ins);
return sm->add_instructions({ins}, map_ins);
}
static auto insert_ins_in_submodule(module_ref sm, instruction_ref ins)
{
std::unordered_map<instruction_ref, instruction_ref> map_ins;
return insert_ins_in_submodule(sm, ins, map_ins);
}
static auto
insert_module_in_submodule(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
insert_params(sm, ins, map_ins);
auto* m = ins->module_inputs().front();
auto param_map = get_ins_param_map(ins->inputs(), m);
for(auto&& [input, param] : param_map)
{
map_ins[param] = map_ins.at(input);
}
return sm->add_instructions(m, map_ins);
}
static std::vector<instruction_ref>
find_inputs(module_ref sm,
const module& parent,
const std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
std::vector<instruction_ref> result;
std::map<std::string, instruction_ref> names;
for(auto&& [input, param] : map_ins)
{
if(not sm->has_instruction(param))
continue;
if(param->name() != "@param")
continue;
if(not parent.has_instruction(input))
continue;
auto v = param->get_operator().to_value();
auto name = v.at("parameter").to<std::string>();
names[name] = input;
}
std::transform(names.begin(), names.end(), std::back_inserter(result), [](const auto& p) {
return p.second;
});
assert(result.size() == sm->get_parameter_shapes().size());
return result;
}
static void create_reduce_modules(module_pass_manager& mpm)
{
std::size_t n = 0;
for(auto ins : iterator_for(mpm.get_module()))
{
if(not ins->get_operator().attributes().get("reduce", false))
continue;
if(ins->inputs().size() != 1)
continue;
auto* rm =
mpm.create_module(mpm.get_module().name() + ":" + ins->name() + std::to_string(n++));
rm->set_bypass();
rm->add_return(insert_ins_in_submodule(rm, ins));
auto v = ins->get_operator().to_value();
mpm.get_module().replace_instruction(
ins, make_op("fused_reduce", {{"axes", v["axes"]}}), ins->inputs(), {rm});
}
}
template <class... Ms>
static auto match_broadcast(Ms... ms)
{
return match::skip(match::name("contiguous"))(
match::name("multibroadcast")(match::arg(0)(ms...), match::used_once()).bind("broadcast"));
}
template <class... Ms>
static auto any_input(Ms... ms)
{
return match::any_of[match::inputs()](match::any(ms...).bind("input"));
}
static auto match_broadcastable_input(const std::string& op, const std::string& name)
{
auto match_op = match::name(op)(match::used_once()).bind(name);
auto match_op_input = any_input(match_op, match::used_once());
auto broadcast_match_op_input = any_input(match_broadcast(match_op), match::used_once());
return match::any_of(match_op_input, broadcast_match_op_input);
}
namespace {
struct find_pointwise_reduce
{
auto matcher() const
{
return match::name("fused_reduce")(match_broadcastable_input("pointwise", "pointwise"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto reduce = r.result;
auto input = r.instructions["pointwise"];
const auto* pm = input->module_inputs().front();
const auto* old_rm = reduce->module_inputs().front();
auto* rm = mpm.create_module(pm->name() + ":" + old_rm->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Insert pointwise
auto rins = insert_ins_in_submodule(rm, input, map_ins).front();
map_ins[input] = rins;
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast] = insert_ins_in_submodule(rm, broadcast, map_ins).front();
}
// Insert fused_reduce
rm->add_return(insert_module_in_submodule(rm, reduce, map_ins));
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(reduce, reduce->get_operator(), new_inputs, {rm});
}
};
struct find_reduce_pointwise
{
auto matcher() const
{
return match::name("pointwise")(match_broadcastable_input("fused_reduce", "reduce"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto pw = r.result;
auto reduce = r.instructions["reduce"];
auto input = r.instructions["input"];
const auto* pm = pw->module_inputs().front();
const auto* old_rm = reduce->module_inputs().front();
auto* rm = mpm.create_module(old_rm->name() + ":" + pm->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Copy module instructions
insert_module_in_submodule(rm, reduce, map_ins);
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast->inputs().front()] = rm->get_returns().front();
auto bout = insert_ins_in_submodule(rm, broadcast, map_ins);
map_ins[input] = bout.front();
}
else
{
map_ins[input] = rm->get_returns().front();
}
auto out = insert_ins_in_submodule(rm, pw, map_ins);
rm->replace_return(out);
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(pw, reduce->get_operator(), new_inputs, {rm});
}
};
struct find_reduce_reduce
{
auto matcher() const
{
return match::name("fused_reduce")(match_broadcastable_input("fused_reduce", "reduce"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto reduce1 = r.result;
auto reduce2 = r.instructions["reduce"];
auto input = r.instructions["input"];
if(reduce1->get_operator() != reduce2->get_operator())
return;
const auto* rm1 = reduce1->module_inputs().front();
const auto* rm2 = reduce2->module_inputs().front();
auto* rm = mpm.create_module(rm1->name() + ":" + rm2->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Copy reduce1 instructions
insert_module_in_submodule(rm, reduce2, map_ins);
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast->inputs().front()] = rm->get_returns().front();
auto bout = insert_ins_in_submodule(rm, broadcast, map_ins);
map_ins[input] = bout.front();
}
else
{
map_ins[input] = rm->get_returns().front();
}
auto out = insert_module_in_submodule(rm, reduce1, map_ins);
rm->replace_return(out);
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(reduce1, reduce1->get_operator(), new_inputs, {rm});
}
};
} // namespace
void fuse_reduce::apply(module_pass_manager& mpm) const
{
create_reduce_modules(mpm);
mpm.run_pass(dead_code_elimination{});
for(int i = 0; i < 4; i++)
{
match::find_matches(
mpm, find_reduce_pointwise{}, find_pointwise_reduce{}, find_reduce_reduce{});
mpm.run_pass(dead_code_elimination{});
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -41,6 +41,11 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha ...@@ -41,6 +41,11 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
shape common_shape(const std::vector<shape>& shapes); shape common_shape(const std::vector<shape>& shapes);
std::vector<instruction_ref>
insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs);
std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs);
instruction_ref insert_common_op(module& m, instruction_ref insert_common_op(module& m,
instruction_ref ins, instruction_ref ins,
const operation& op, const operation& op,
......
...@@ -32,9 +32,17 @@ inline namespace MIGRAPHX_INLINE_NS { ...@@ -32,9 +32,17 @@ inline namespace MIGRAPHX_INLINE_NS {
struct compile_options struct compile_options
{ {
bool offload_copy = false; /**
* Have MIGX allocate memory for parameters and add instructions
* to copy parameters and output to/from an offload device like a GPU.
*/
bool offload_copy = false;
bool fast_math = true; bool fast_math = true;
bool exhaustive_tune = false; bool exhaustive_tune = false;
/// Use the split_single_dyn_dim pass
bool split_single_dyn_dim = false;
tracer trace{}; tracer trace{};
}; };
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_RTGLIB_CONVOLUTION_HPP
#include <migraphx/config.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/tensor_view.hpp>
#include <vector>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class Output, class T, class Padding, class Stride>
void convolution(Output output, T input, T weights, Padding padding, Stride stride, int group)
{
auto output_shape = output.get_shape();
auto in_lens = input.get_shape().lens();
auto wei_lens = weights.get_shape().lens();
auto wei_n = wei_lens[0];
auto wei_c = wei_lens[1];
std::vector<std::size_t> win_size(wei_lens.begin() + 1, wei_lens.end());
par_for(output_shape.elements(), [&](auto i) {
auto idx_o = output_shape.multi(i);
auto w = idx_o[1];
auto n_dim = idx_o.size();
std::vector<std::ptrdiff_t> win_start;
for(std::size_t dim = 2; dim < n_dim; ++dim)
{
auto d_2 = dim - 2;
win_start.push_back(std::ptrdiff_t(idx_o[dim] * stride[d_2]) -
std::ptrdiff_t(padding[d_2]));
}
const auto group_id = w / (wei_n / group);
shape win_shape{output_shape.type(), win_size};
double acc = 0.0;
shape_for_each(win_shape, [&](auto idx_win) {
auto k = idx_win[0];
const auto in_ch = group_id * wei_c + k;
std::vector<std::ptrdiff_t> idx(idx_o.begin(), idx_o.end());
idx[1] = in_ch;
std::transform(idx_win.begin() + 1,
idx_win.end(),
win_start.begin(),
idx.begin() + 2,
[](std::ptrdiff_t ii, std::ptrdiff_t jj) { return ii + jj; });
std::vector<std::ptrdiff_t> idx_wei(idx_o.size());
idx_wei[0] = w;
std::copy(idx_win.begin(), idx_win.end(), idx_wei.begin() + 1);
if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
std::equal(idx.begin(),
idx.end(),
in_lens.begin(),
in_lens.end(),
std::less<std::ptrdiff_t>{}))
{
acc += input(idx.begin(), idx.end()) * weights(idx_wei.begin(), idx_wei.end());
}
});
output[i] = acc;
});
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -77,6 +77,7 @@ struct cpp_generator ...@@ -77,6 +77,7 @@ struct cpp_generator
function& set_types(const module& m); function& set_types(const module& m);
function& set_types(const module& m, const std::function<std::string(shape)>& parse); function& set_types(const module& m, const std::function<std::string(shape)>& parse);
function& set_generic_types(const module& m); function& set_generic_types(const module& m);
function& add_generic_param(const std::string& pname);
}; };
cpp_generator(); cpp_generator();
...@@ -105,6 +106,10 @@ struct cpp_generator ...@@ -105,6 +106,10 @@ struct cpp_generator
std::string create_function(const function& f); std::string create_function(const function& f);
static std::vector<std::string>
to_args(const std::vector<instruction_ref>& inputs,
const std::unordered_map<instruction_ref, std::string>& names);
private: private:
std::unique_ptr<cpp_generator_impl> impl; std::unique_ptr<cpp_generator_impl> impl;
}; };
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_FUSE_REDUCE_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_FUSE_REDUCE_HPP
#include <migraphx/config.hpp>
#include <string>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module_pass_manager;
struct fuse_reduce
{
std::string name() const { return "fuse_reduce"; }
void apply(module_pass_manager& mpm) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_FUSE_POINTWISE_HPP
...@@ -347,6 +347,7 @@ match::matcher_result find_match(module& modl, M&& m) ...@@ -347,6 +347,7 @@ match::matcher_result find_match(module& modl, M&& m)
} }
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MATCHES) MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MATCHES)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_VALIDATE_MATCHES)
/// Find matches for an instruction in the module /// Find matches for an instruction in the module
template <class Mod, class... Ms> template <class Mod, class... Ms>
...@@ -356,7 +357,11 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms) ...@@ -356,7 +357,11 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
const const
#endif #endif
int trace = value_of(MIGRAPHX_TRACE_MATCHES{}); int trace = value_of(MIGRAPHX_TRACE_MATCHES{});
bool match = false; #if !defined(__GNUC__) || defined(__clang__) || __GNUC__ > 5
const
#endif
bool validate = enabled(MIGRAPHX_VALIDATE_MATCHES{});
bool match = false;
each_args( each_args(
[&](auto&& m) { [&](auto&& m) {
if(match) if(match)
...@@ -371,7 +376,20 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms) ...@@ -371,7 +376,20 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
std::cout << "Matched by " << get_type_name(m) << std::endl; std::cout << "Matched by " << get_type_name(m) << std::endl;
get_module(mod).debug_print(ins); get_module(mod).debug_print(ins);
} }
// If its already invalid dont validate it again
bool invalidated = validate and get_module(mod).validate() != get_module(mod).end();
m.apply(mod, r); m.apply(mod, r);
if(validate and not invalidated)
{
auto invalid = get_module(mod).validate();
if(invalid != get_module(mod).end())
{
std::cout << "Invalid program from match: " << get_type_name(m) << std::endl;
std::cout << "Invalid instructions: " << std::endl;
get_module(mod).debug_print(invalid->inputs());
get_module(mod).debug_print(invalid);
}
}
match = true; match = true;
}, },
ms...); ms...);
......
...@@ -178,6 +178,8 @@ struct module ...@@ -178,6 +178,8 @@ struct module
bool has_instruction(instruction_ref ins) const; bool has_instruction(instruction_ref ins) const;
std::vector<instruction_ref> get_returns() const;
std::size_t size() const; std::size_t size() const;
instruction_ref begin() const; instruction_ref begin() const;
instruction_ref end() const; instruction_ref end() const;
......
...@@ -26,6 +26,7 @@ ...@@ -26,6 +26,7 @@
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <functional>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
......
...@@ -37,7 +37,7 @@ struct onnx_options ...@@ -37,7 +37,7 @@ struct onnx_options
std::size_t default_dim_value = 0; std::size_t default_dim_value = 0;
/// Default dynamic dimension size (if both default_dim_value and default_dyn_dim_value set /// Default dynamic dimension size (if both default_dim_value and default_dyn_dim_value set
/// parser throws) /// parser throws)
shape::dynamic_dimension default_dyn_dim_value = {1, 1, 0}; shape::dynamic_dimension default_dyn_dim_value = {1, 1};
/// Explicitly specify the dims of an input /// Explicitly specify the dims of an input
std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims = {}; std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims = {};
/// Explicitly specify dynamic dims of an input (if both map_input_dims and map_dyn_input_dims /// Explicitly specify dynamic dims of an input (if both map_input_dims and map_dyn_input_dims
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment