Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
86663aa5
Commit
86663aa5
authored
Aug 21, 2019
by
Khalique
Browse files
add gen files
parent
464b7f5b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
1835 additions
and
0 deletions
+1835
-0
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+1522
-0
test/tf/gen_tf_pb.py
test/tf/gen_tf_pb.py
+313
-0
No files found.
test/onnx/gen_onnx.py
0 → 100644
View file @
86663aa5
import
numpy
as
np
import
onnx
from
onnx
import
helper
from
onnx
import
numpy_helper
from
onnx
import
AttributeProto
,
TensorProto
,
GraphProto
def
acos_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
])
node
=
onnx
.
helper
.
make_node
(
'Acos'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_acos'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'acos-example'
)
onnx
.
save
(
model_def
,
'onnx_acos.onnx'
)
def
add_bcast_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
,
4
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
[
'0'
,
'1'
],
broadcast
=
1
,
axis
=
1
,
outputs
=
[
'2'
]
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-add_bcast'
,
[
x
,
y
],
[
z
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'add_bcast-example'
)
onnx
.
save
(
model_def
,
'add_bcast_test.onnx'
)
def
add_fp16_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT16
,
[
1
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT16
,
[
1
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT16
,
[
1
])
node
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'2'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-add-fp16'
,
[
x
,
y
],
[
z
],
# '0' -> 1.5, '1' -> 2.5
initializer
=
[
onnx
.
helper
.
make_tensor
(
'0'
,
TensorProto
.
FLOAT16
,
[
1
],
[
15872
]),
onnx
.
helper
.
make_tensor
(
'1'
,
TensorProto
.
FLOAT16
,
[
1
],
[
16640
])]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'add-fp16-example'
))
onnx
.
save
(
model_def
,
'add_fp16_test.onnx'
)
def
add_scalar_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'2'
]
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-add-scalar'
,
[
x
,
y
],
[
z
],
initializer
=
[
helper
.
make_tensor
(
'1'
,
TensorProto
.
FLOAT
,
[],
[
1
])]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'add_scalar-example'
)
onnx
.
save
(
model_def
,
'add_scalar_test.onnx'
)
def
argmax_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
6
])
node
=
onnx
.
helper
.
make_node
(
'ArgMax'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
axis
=
2
,
keepdims
=
0
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_argmax'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'argmax-example'
)
onnx
.
save
(
model_def
,
'argmax_test.onnx'
)
def
argmin_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'ArgMin'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
axis
=
3
,
keepdims
=
0
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_argmin'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'argmin-example'
)
onnx
.
save
(
model_def
,
'argmin_test.onnx'
)
def
asin_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
])
node
=
onnx
.
helper
.
make_node
(
'Asin'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_asin'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'asin-example'
)
onnx
.
save
(
model_def
,
'asin_test.onnx'
)
def
atan_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
])
node
=
onnx
.
helper
.
make_node
(
'Atan'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_atan'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'atan-example'
)
onnx
.
save
(
model_def
,
'atan_test.onnx'
)
def
cast_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT16
,
[
10
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
])
node
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
to
=
1
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_cast'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'cast-example'
)
onnx
.
save
(
model_def
,
'cast_test.onnx'
)
def
clip_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
],
max
=
6.0
,
min
=
0.0
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-model'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'clip-example'
)
onnx
.
save
(
model_def
,
'clip_test.onnx'
)
def
concat_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
4
,
3
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
7
,
4
,
3
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
9
,
4
,
3
])
node
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
[
'0'
,
'1'
],
axis
=
0
,
outputs
=
[
'2'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-concat'
,
[
x
,
y
],
[
z
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'concat-example'
)
onnx
.
save
(
model_def
,
'concat_test.onnx'
)
def
constant_test
():
x
=
np
.
array
([
0
,
1
,
2
])
y
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'0'
],
value
=
onnx
.
helper
.
make_tensor
(
name
=
'const_tensor'
,
data_type
=
TensorProto
.
FLOAT
,
dims
=
x
.
shape
,
vals
=
x
.
flatten
().
astype
(
float
),
),
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-constant'
,
[],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'constant-example'
))
onnx
.
save
(
model_def
,
'constant_test.onnx'
)
def
constant_fill_test
():
np_shape
=
np
.
array
([
2
,
3
])
ts_shape
=
helper
.
make_tensor
(
name
=
'shape_tensor'
,
data_type
=
TensorProto
.
INT32
,
dims
=
np_shape
.
shape
,
vals
=
np_shape
.
flatten
().
astype
(
int
)
)
const_shape_node
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'shape'
],
value
=
ts_shape
,
)
shape
=
helper
.
make_tensor_value_info
(
'shape'
,
TensorProto
.
INT32
,
[
2
])
value
=
helper
.
make_tensor_value_info
(
'value'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'ConstantFill'
,
inputs
=
[
'shape'
],
outputs
=
[
'value'
],
dtype
=
1
,
value
=
1.0
,
input_as_shape
=
1
,
)
graph_def
=
helper
.
make_graph
(
[
const_shape_node
,
node
],
'constant_fill'
,
[],
[
value
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'constant-fill-example'
)
onnx
.
save
(
model_def
,
'const_fill1_test.onnx'
)
node
=
onnx
.
helper
.
make_node
(
'ConstantFill'
,
inputs
=
[],
outputs
=
[
'value'
],
dtype
=
1
,
value
=
1.0
,
shape
=
[
2
,
3
],
input_as_shape
=
0
,
)
graph_def
=
helper
.
make_graph
(
[
node
],
'constant_fill'
,
[],
[
value
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'constant-fill-example'
)
onnx
.
save
(
model_def
,
'const_fill2_test.onnx'
)
def
constant_scalar_test
():
x
=
np
.
array
([
1
])
y
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
])
node
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'0'
],
value
=
onnx
.
helper
.
make_tensor
(
name
=
'const_tensor'
,
data_type
=
TensorProto
.
INT32
,
dims
=
x
.
shape
,
vals
=
x
.
flatten
().
astype
(
int
),
),
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-constant'
,
[],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'constant-scalar-example'
))
onnx
.
save
(
model_def
,
'constant_scalar_test.onnx'
)
def
const_of_shape_empty_input_test
():
tensor_val
=
onnx
.
helper
.
make_tensor
(
'value'
,
onnx
.
TensorProto
.
INT64
,
[
1
],[
10
]
)
shape_val
=
np
.
array
([
2
,
3
,
4
]).
astype
(
np
.
int64
)
empty_val
=
np
.
array
([]).
astype
(
np
.
int64
)
empty_ts
=
helper
.
make_tensor
(
name
=
'empty_tensor'
,
data_type
=
TensorProto
.
INT32
,
dims
=
empty_val
.
shape
,
vals
=
empty_val
.
flatten
().
astype
(
int
)
)
shape_const
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'shape'
],
value
=
empty_ts
,
)
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
])
node
=
onnx
.
helper
.
make_node
(
'ConstantOfShape'
,
inputs
=
[
'shape'
],
outputs
=
[
'y'
],
value
=
tensor_val
,
)
graph_def
=
helper
.
make_graph
(
[
shape_const
,
node
],
'constant_of_shape'
,
[],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'constant-of-shape'
)
onnx
.
save
(
model_def
,
'const_of_shape_empty_input_test.onnx'
)
def
const_of_shape_float_test
():
tensor_val
=
onnx
.
helper
.
make_tensor
(
'value'
,
onnx
.
TensorProto
.
FLOAT
,
[
1
],[
10
])
shape_val
=
np
.
array
([
2
,
3
,
4
]).
astype
(
np
.
int64
)
shape_ts
=
helper
.
make_tensor
(
name
=
'shape_tensor'
,
data_type
=
TensorProto
.
INT32
,
dims
=
shape_val
.
shape
,
vals
=
shape_val
.
flatten
().
astype
(
int
)
)
shape_const
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'shape'
],
value
=
shape_ts
,
)
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
])
node
=
onnx
.
helper
.
make_node
(
'ConstantOfShape'
,
inputs
=
[
'shape'
],
outputs
=
[
'y'
],
value
=
tensor_val
)
graph_def
=
helper
.
make_graph
(
[
shape_const
,
node
],
'constant_of_shape'
,
[],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'constant-of-shape'
)
onnx
.
save
(
model_def
,
'const_of_shape_float_test.onnx'
)
def
const_of_shape_int64_test
():
tensor_val
=
onnx
.
helper
.
make_tensor
(
'value'
,
onnx
.
TensorProto
.
INT64
,
[
1
],[
10
]
)
shape_val
=
np
.
array
([
2
,
3
,
4
]).
astype
(
np
.
int64
)
shape_ts
=
helper
.
make_tensor
(
name
=
'shape_tensor'
,
data_type
=
TensorProto
.
INT32
,
dims
=
shape_val
.
shape
,
vals
=
shape_val
.
flatten
().
astype
(
int
)
)
shape_const
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'shape'
],
value
=
shape_ts
,
)
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
])
node
=
onnx
.
helper
.
make_node
(
'ConstantOfShape'
,
inputs
=
[
'shape'
],
outputs
=
[
'y'
],
value
=
tensor_val
)
graph_def
=
helper
.
make_graph
(
[
shape_const
,
node
],
'constant_of_shape'
,
[],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'constant-of-shape'
)
onnx
.
save
(
model_def
,
'const_of_shape_int64_test.onnx'
)
def
const_of_shape_no_value_attr_test
():
tensor_val
=
onnx
.
helper
.
make_tensor
(
'value'
,
onnx
.
TensorProto
.
INT64
,
[
1
],[
10
]
)
shape_val
=
np
.
array
([
2
,
3
,
4
]).
astype
(
np
.
int64
)
shape_ts
=
helper
.
make_tensor
(
name
=
'shape_tensor'
,
data_type
=
TensorProto
.
INT32
,
dims
=
shape_val
.
shape
,
vals
=
shape_val
.
flatten
().
astype
(
int
)
)
shape_const
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'shape'
],
value
=
shape_ts
,
)
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
])
node
=
onnx
.
helper
.
make_node
(
'ConstantOfShape'
,
inputs
=
[
'shape'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
shape_const
,
node
],
'constant_of_shape'
,
[],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'constant-of-shape'
)
onnx
.
save
(
model_def
,
'const_of_shape_no_value_attr_test.onnx'
)
def
cos_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
])
node
=
onnx
.
helper
.
make_node
(
'Cos'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_cos'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'cos-example'
)
onnx
.
save
(
model_def
,
'cos_test.onnx'
)
def
cosh_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
1
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
1
])
node
=
onnx
.
helper
.
make_node
(
'Cosh'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_cosh'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'cosh-example'
)
onnx
.
save
(
model_def
,
'cosh_test.onnx'
)
def
dropout_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
2
,
2
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
2
,
2
])
node
=
onnx
.
helper
.
make_node
(
'Dropout'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-dropout'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'dropout-example'
)
onnx
.
save
(
model_def
,
'dropout_test.onnx'
)
def
elu_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'Elu'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
],
alpha
=
0.01
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-model'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'elu-example'
)
onnx
.
save
(
model_def
,
'elu_test.onnx'
)
def
erf_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
,
15
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
,
15
])
node
=
onnx
.
helper
.
make_node
(
'Erf'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_erf'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'erf-example'
)
onnx
.
save
(
model_def
,
'erf_test.onnx'
)
def
exp_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
])
node
=
onnx
.
helper
.
make_node
(
'Exp'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_exp'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'exp-example'
)
onnx
.
save
(
model_def
,
'exp_test.onnx'
)
def
expand_test
():
shape_val
=
np
.
array
([
2
,
3
,
4
,
5
]).
astype
(
np
.
int64
)
shape_ts
=
helper
.
make_tensor
(
name
=
'shape_tensor'
,
data_type
=
TensorProto
.
INT32
,
dims
=
shape_val
.
shape
,
vals
=
shape_val
.
flatten
().
astype
(
int
)
)
shape_const
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
'shape'
],
value
=
shape_ts
,
)
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
3
,
1
,
1
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Expand'
,
inputs
=
[
'x'
,
'shape'
],
outputs
=
[
'y'
]
)
graph_def
=
helper
.
make_graph
(
[
shape_const
,
node
],
'expand'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'expand'
)
onnx
.
save
(
model_def
,
'expand_test.onnx'
)
def
flatten_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
y
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
6
,
20
])
y2
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
2
,
60
])
node
=
onnx
.
helper
.
make_node
(
'Flatten'
,
inputs
=
[
'0'
],
axis
=
2
,
outputs
=
[
'2'
]
)
node2
=
onnx
.
helper
.
make_node
(
'Flatten'
,
inputs
=
[
'0'
],
outputs
=
[
'3'
]
)
graph_def
=
helper
.
make_graph
(
[
node
,
node2
],
'test-flatten'
,
[
x
],
[
y
,
y2
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'flatten-example'
))
onnx
.
save
(
model_def
,
'flatten_test.onnx'
)
def
gather_test
():
x
=
helper
.
make_tensor_value_info
(
'data'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
i
=
helper
.
make_tensor_value_info
(
'indices'
,
TensorProto
.
INT32
,
[
2
,
3
,
4
,
5
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
[
'data'
,
'indices'
],
outputs
=
[
'y'
],
axis
=
1
,
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_gather'
,
[
x
,
i
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'gather-example'
)
onnx
.
save
(
model_def
,
'gather_test.onnx'
)
def
gemm_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
5
,
7
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
11
,
5
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[])
a
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
7
,
11
])
node
=
onnx
.
helper
.
make_node
(
'Gemm'
,
inputs
=
[
'0'
,
'1'
,
'2'
],
outputs
=
[
'3'
],
alpha
=
2.0
,
beta
=
2.0
,
transA
=
1
,
transB
=
1
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-gemm'
,
[
x
,
y
,
z
],
[
a
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'gemm-example'
))
onnx
.
save
(
model_def
,
'gemm_test.onnx'
)
def
gemm_ex_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
5
,
6
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
5
,
7
])
m3
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
6
,
7
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
6
,
7
])
node
=
onnx
.
helper
.
make_node
(
'Gemm'
,
inputs
=
[
'1'
,
'2'
,
'3'
],
outputs
=
[
'y'
],
alpha
=
0.5
,
beta
=
0.8
,
transA
=
1
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_gemm_ex'
,
[
m1
,
m2
,
m3
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'gemm-example'
)
onnx
.
save
(
model_def
,
'gemm_ex_test.onnx'
)
def
gemm_ex_brcst_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
5
,
6
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
5
,
7
])
m3
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
6
,
1
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
6
,
7
])
node
=
onnx
.
helper
.
make_node
(
'Gemm'
,
inputs
=
[
'1'
,
'2'
,
'3'
],
outputs
=
[
'y'
],
alpha
=
0.5
,
beta
=
0.8
,
transA
=
1
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_gemm_ex'
,
[
m1
,
m2
,
m3
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'gemm-example'
)
onnx
.
save
(
model_def
,
'gemm_ex_brcst_test.onnx'
)
def
globalavgpool_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
16
,
16
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
1
,
1
])
node
=
onnx
.
helper
.
make_node
(
'GlobalAveragePool'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-globalavgpool'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'globalavgpool-example'
)
onnx
.
save
(
model_def
,
'globalavgpool_test.onnx'
)
def
globalmaxpool_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
16
,
16
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
1
,
1
])
node
=
onnx
.
helper
.
make_node
(
'GlobalMaxPool'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-globalmaxpool'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'globalmaxpool-example'
)
onnx
.
save
(
model_def
,
'globalmaxpool_test.onnx'
)
def
group_conv_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
4
,
16
,
16
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
4
,
1
,
3
,
3
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
1
,
4
,
14
,
14
])
node
=
onnx
.
helper
.
make_node
(
'Conv'
,
inputs
=
[
'0'
,
'1'
],
group
=
4
,
outputs
=
[
'2'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-group_conv'
,
[
x
,
y
],
[
z
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'group_conv-example'
)
onnx
.
save
(
model_def
,
'group_conv_test.onnx'
)
def
imagescaler_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
16
,
16
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
16
,
16
])
node
=
onnx
.
helper
.
make_node
(
'ImageScaler'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
],
bias
=
[
0.01
,
0.02
,
0.03
],
scale
=
0.5
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-imagescaler'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'imagescaler-example'
)
onnx
.
save
(
model_def
,
'imagescaler_test.onnx'
)
def
implicit_add_bcast_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
1
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'2'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-multi_bcast'
,
[
x
,
y
],
[
z
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'implicit_bcast-example'
)
onnx
.
save
(
model_def
,
'implicit_add_bcast_test.onnx'
)
def
implicit_pow_bcast_test
():
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
arg1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
1
])
arg_out
=
helper
.
make_tensor_value_info
(
'out'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Pow'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'out'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'pow_test'
,
[
arg0
,
arg1
],
[
arg_out
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'pow2'
)
onnx
.
save
(
model_def
,
'implicit_pow_bcast_test.onnx'
)
def
implicit_sub_bcast_test
():
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
arg1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
4
,
5
])
arg_out
=
helper
.
make_tensor_value_info
(
'out'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'out'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'subtraction2'
,
[
arg0
,
arg1
],
[
arg_out
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'add2'
)
onnx
.
save
(
model_def
,
'implicit_sub_bcast_test.onnx'
)
def
leaky_relu_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'LeakyRelu'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
],
alpha
=
0.01
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-model'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'leaky_relu-example'
)
onnx
.
save
(
model_def
,
'leaky_relu_test.onnx'
)
def
log_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
10
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
10
])
node
=
onnx
.
helper
.
make_node
(
'Log'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_log'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'log-example'
)
onnx
.
save
(
model_def
,
'log_test.onnx'
)
def
logsoftmax_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
node
=
onnx
.
helper
.
make_node
(
'LogSoftmax'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
axis
=
1
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_logsoftmax'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'logsoftmax-example'
)
onnx
.
save
(
model_def
,
'logsoftmax_test.onnx'
)
def
lrn_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
28
,
24
,
24
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
28
,
24
,
24
])
node
=
onnx
.
helper
.
make_node
(
'LRN'
,
inputs
=
[
'0'
],
size
=
5
,
alpha
=
0.0001
,
beta
=
0.75
,
bias
=
1.0
,
outputs
=
[
'1'
]
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-lrn'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'lrn-example'
))
onnx
.
save
(
model_def
,
'lrn_test.onnx'
)
def
matmul_bmbm_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
,
6
,
7
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
5
,
2
,
1
,
7
,
8
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
5
,
2
,
3
,
6
,
8
])
node
=
onnx
.
helper
.
make_node
(
'MatMul'
,
inputs
=
[
'1'
,
'2'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_matmul'
,
[
m1
,
m2
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'matmul-example'
)
onnx
.
save
(
model_def
,
'matmul_bmbm_test.onnx'
)
def
matmul_bmv_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
,
6
,
7
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
7
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
,
6
])
node
=
onnx
.
helper
.
make_node
(
'MatMul'
,
inputs
=
[
'1'
,
'2'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_matmul'
,
[
m1
,
m2
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'matmul-example'
)
onnx
.
save
(
model_def
,
'matmul_bmv_test.onnx'
)
def
matmul_mv_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
6
,
7
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
7
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
6
])
node
=
onnx
.
helper
.
make_node
(
'MatMul'
,
inputs
=
[
'1'
,
'2'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_matmul'
,
[
m1
,
m2
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'matmul-example'
)
onnx
.
save
(
model_def
,
'matmul_mv_test.onnx'
)
def
matmul_vbm_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
7
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
5
,
7
,
8
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
5
,
8
])
node
=
onnx
.
helper
.
make_node
(
'MatMul'
,
inputs
=
[
'1'
,
'2'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_matmul'
,
[
m1
,
m2
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'matmul-example'
)
onnx
.
save
(
model_def
,
'matmul_vbm_test.onnx'
)
def
matmul_vm_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
7
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
7
,
8
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
8
])
node
=
onnx
.
helper
.
make_node
(
'MatMul'
,
inputs
=
[
'1'
,
'2'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_matmul'
,
[
m1
,
m2
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'matmul-example'
)
onnx
.
save
(
model_def
,
'matmul_vm_test.onnx'
)
def
matmul_vv_test
():
m1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
7
])
m2
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
7
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
1
])
node
=
onnx
.
helper
.
make_node
(
'MatMul'
,
inputs
=
[
'1'
,
'2'
],
outputs
=
[
'y'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_matmul'
,
[
m1
,
m2
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'matmul-example'
)
onnx
.
save
(
model_def
,
'matmul_vv_test.onnx'
)
def
max_test
():
a
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
b
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
c
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'Max'
,
inputs
=
[
'0'
,
'1'
,
'2'
],
outputs
=
[
'3'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-dropout'
,
[
a
,
b
,
c
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'max-example'
)
onnx
.
save
(
model_def
,
'max_test.onnx'
)
def
min_test
():
a
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
b
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
c
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'Min'
,
inputs
=
[
'0'
,
'1'
,
'2'
],
outputs
=
[
'3'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-dropout'
,
[
a
,
b
,
c
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'min-example'
)
onnx
.
save
(
model_def
,
'min_test.onnx'
)
def
no_pad_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
2
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
2
,
2
])
node
=
onnx
.
helper
.
make_node
(
'Pad'
,
inputs
=
[
'0'
],
pads
=
[
0
,
0
,
0
,
0
],
outputs
=
[
'1'
]
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-no-pad'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'no-pad-example'
)
onnx
.
save
(
model_def
,
'no_pad_test.onnx'
)
def
pad_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
2
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
4
,
4
])
node
=
onnx
.
helper
.
make_node
(
'Pad'
,
inputs
=
[
'0'
],
pads
=
[
1
,
1
,
1
,
1
],
outputs
=
[
'1'
]
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-pad'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'pad-example'
)
onnx
.
save
(
model_def
,
'pad_test.onnx'
)
def
pow_test
():
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
arg1
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
arg_out
=
helper
.
make_tensor_value_info
(
'out'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Pow'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'out'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'pow_test'
,
[
arg0
,
arg1
],
[
arg_out
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'pow2'
)
onnx
.
save
(
model_def
,
'pow_test.onnx'
)
def
reducemean_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
,
4
])
axes
=
[
2
,
3
]
node
=
onnx
.
helper
.
make_node
(
'ReduceMean'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
axes
=
axes
,
keepdims
=
0
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_reducemean'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'reducemean-example'
)
onnx
.
save
(
model_def
,
'reducemean_test.onnx'
)
def
reducemean_keepdims_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
1
,
6
])
axes
=
[
2
]
node
=
onnx
.
helper
.
make_node
(
'ReduceMean'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
axes
=
axes
,
keepdims
=
1
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_reducemean'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'reducemean-example'
)
print
(
'The mode is:{}'
.
format
(
model_def
))
onnx
.
checker
.
check_model
(
model_def
)
onnx
.
save
(
model_def
,
'reducemean_keepdims_test.onnx'
)
def
reducesum_keepdims_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
1
,
1
])
axes
=
[
2
,
3
]
node
=
onnx
.
helper
.
make_node
(
'ReduceSum'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
axes
=
axes
,
keepdims
=
1
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test_reducesum'
,
[
x
],
[
y
],
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'reducesum-example'
)
print
(
'The mode is:{}'
.
format
(
model_def
))
onnx
.
checker
.
check_model
(
model_def
)
onnx
.
save
(
model_def
,
'reducesum_keepdims_test.onnx'
)
def
reshape_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
4
,
2
,
3
])
x_shape
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
INT64
,
[
2
])
x_shape_list
=
[
3
,
8
]
y
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
,
8
])
y2
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
3
,
8
])
node
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'2'
]
)
node2
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
[
'0'
],
shape
=
x_shape_list
,
outputs
=
[
'3'
]
)
graph_def
=
helper
.
make_graph
(
[
node
,
node2
],
'test-reshape'
,
[
x
,
x_shape
],
[
y
,
y2
],
initializer
=
[
helper
.
make_tensor
(
'1'
,
TensorProto
.
INT64
,
[
2
],
[
3
,
8
])]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'reshape-example'
))
onnx
.
save
(
model_def
,
'reshape_test.onnx'
)
def
slice_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
,
2
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
2
])
node
=
onnx
.
helper
.
make_node
(
'Slice'
,
inputs
=
[
'0'
],
axes
=
[
0
,
1
],
starts
=
[
1
,
0
],
ends
=
[
2
,
2
],
outputs
=
[
'1'
]
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-slice'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'slice-example'
))
onnx
.
save
(
model_def
,
'slice_test.onnx'
)
def
softmax_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
3
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
3
])
node
=
onnx
.
helper
.
make_node
(
'Softmax'
,
inputs
=
[
'0'
],
outputs
=
[
'1'
]
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-softmax'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'softmax-example'
))
onnx
.
save
(
model_def
,
'softmax_test.onnx'
)
def
squeeze_unsqueeze_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
1
,
1
,
2
,
1
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
,
2
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
3
,
1
,
2
,
1
])
node
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
[
'0'
],
axes
=
[
0
,
2
,
3
,
5
],
outputs
=
[
'1'
]
)
node2
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
[
'1'
],
axes
=
[
0
,
1
,
3
,
5
],
outputs
=
[
'2'
]
)
graph_def
=
helper
.
make_graph
(
[
node
,
node2
],
'test-squeeze-unsqueeze'
,
[
x
],
[
z
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
(
'squeeze-unsqueeze-example'
))
onnx
.
save
(
model_def
,
'squeeze_unsqueeze_test.onnx'
)
def
sum_test
():
a
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
b
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
c
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'Sum'
,
inputs
=
[
'0'
,
'1'
,
'2'
],
outputs
=
[
'3'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-sum'
,
[
a
,
b
,
c
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'sum-example'
)
onnx
.
save
(
model_def
,
'sum_test.onnx'
)
def
sum_test
():
a
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
3
])
b
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
])
c
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
3
])
y
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
3
])
node
=
onnx
.
helper
.
make_node
(
'Sum'
,
inputs
=
[
'0'
,
'1'
,
'2'
],
outputs
=
[
'3'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-sum'
,
[
a
,
b
,
c
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'sum-example'
)
onnx
.
save
(
model_def
,
'sum_test.onnx'
)
def
transpose_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
1
,
2
,
2
,
3
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
1
,
3
,
2
,
2
])
node
=
onnx
.
helper
.
make_node
(
'Transpose'
,
perm
=
[
0
,
3
,
1
,
2
],
inputs
=
[
'0'
],
outputs
=
[
'1'
],
)
graph_def
=
helper
.
make_graph
(
[
node
],
'test-transpose'
,
[
x
],
[
y
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'transpose-example'
)
onnx
.
save
(
model_def
,
'transpose_test.onnx'
)
def
unknown_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
y
=
helper
.
make_tensor_value_info
(
'1'
,
TensorProto
.
FLOAT
,
[
3
,
4
])
z
=
helper
.
make_tensor_value_info
(
'2'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
a
=
helper
.
make_tensor_value_info
(
'3'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
5
])
node
=
onnx
.
helper
.
make_node
(
'Unknown'
,
inputs
=
[
'0'
,
'1'
],
outputs
=
[
'2'
]
)
node2
=
onnx
.
helper
.
make_node
(
'Unknown'
,
inputs
=
[
'2'
],
outputs
=
[
'3'
]
)
graph_def
=
helper
.
make_graph
(
[
node
,
node2
],
'test-unknown'
,
[
x
,
y
],
[
a
]
)
model_def
=
helper
.
make_model
(
graph_def
,
producer_name
=
'unknown-example'
)
onnx
.
save
(
model_def
,
'unknown_test.onnx'
)
\ No newline at end of file
test/tf/gen_tf_pb.py
0 → 100644
View file @
86663aa5
import
numpy
as
np
import
tensorflow
as
tf
def
add_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
add
(
g1_input
,
g2_input
,
name
=
'add1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'add_test.pb'
,
as_text
=
False
)
def
add_bcast_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
1
),
name
=
'1'
)
tf
.
math
.
add
(
g1_input
,
g2_input
,
name
=
'add_bcast1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'add_bcast_test.pb'
,
as_text
=
False
)
def
assert_less_equal_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'1'
)
with
tf
.
control_dependencies
([
tf
.
assert_less_equal
(
g1_input
,
g2_input
)]):
tf
.
add
(
g1_input
,
g2_input
,
name
=
'add1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'assert_less_equal_test.pb'
,
as_text
=
False
)
def
batchmatmul_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
8
,
4
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
4
,
8
),
name
=
'1'
)
tf
.
matmul
(
g1_input
,
g2_input
,
transpose_a
=
True
,
transpose_b
=
True
,
name
=
'batchmatmul1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'batchmatmul_test.pb'
,
as_text
=
False
)
def
batchnorm_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
32
),
name
=
'0'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'1'
)
g1_offset
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'2'
)
g1_mean
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'3'
)
g1_variance
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'4'
)
tf
.
nn
.
fused_batch_norm
(
g1_input
,
g1_scale
,
g1_offset
,
g1_mean
,
g1_variance
,
epsilon
=
0.00001
,
is_training
=
False
,
name
=
'batchnorm1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'batchnorm_test.pb'
,
as_text
=
False
)
def
biasadd_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
500
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
500
),
name
=
'1'
)
tf
.
nn
.
bias_add
(
g1_input
,
g2_input
,
name
=
'bias_add1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'biasadd_test.pb'
,
as_text
=
False
)
def
cast_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
cast
(
g1_input
,
dtype
=
tf
.
int32
,
name
=
'cast1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'cast_test.pb'
,
as_text
=
False
)
def
concat_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
7
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
2
,
3
),
name
=
'1'
)
tf
.
concat
([
g1_input
,
g2_input
],
axis
=
1
,
name
=
'concat1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'concat_test.pb'
,
as_text
=
False
)
def
const_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
name
=
'constant1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'constant_test.pb'
,
as_text
=
False
)
def
conv_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_weights
=
tf
.
constant
(
value
=
1.0
,
dtype
=
tf
.
float32
,
shape
=
(
3
,
3
,
3
,
32
),
name
=
'1'
)
tf
.
nn
.
conv2d
(
g1_input
,
g1_weights
,
[
1
,
1
,
1
,
1
],
"SAME"
,
name
=
'conv1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'conv_test.pb'
,
as_text
=
False
)
def
depthwiseconv_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_weights
=
tf
.
constant
(
value
=
1.0
,
dtype
=
tf
.
float32
,
shape
=
(
3
,
3
,
3
,
1
),
name
=
'1'
)
tf
.
nn
.
depthwise_conv2d_native
(
g1_input
,
g1_weights
,
[
1
,
1
,
1
,
1
],
"SAME"
,
name
=
'depthwiseconv1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'depthwise_conv_test.pb'
,
as_text
=
False
)
def
expanddims_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
,
4
),
name
=
'0'
)
tf
.
expand_dims
(
g1_input
,
axis
=-
1
,
name
=
'expanddims_neg'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'expanddims_neg_test.pb'
,
as_text
=
False
)
def
gather_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
4
),
name
=
'0'
)
tf
.
gather
(
g1_input
,
[
1
,
1
],
axis
=
1
,
name
=
'gather1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'gather_test.pb'
,
as_text
=
False
)
def
identity_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
identity
(
g1_input
,
'identity'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'identity_test.pb'
,
as_text
=
False
)
def
matmul_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
8
,
4
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
8
),
name
=
'1'
)
tf
.
matmul
(
g1_input
,
g2_input
,
transpose_a
=
True
,
transpose_b
=
True
,
name
=
'matmul1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'matmul_test.pb'
,
as_text
=
False
)
def
mean_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
2
,
3
),
keepdims
=
True
,
name
=
'mean1'
)
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
2
,
3
),
keepdims
=
False
,
name
=
'mean2'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'mean_test.pb'
,
as_text
=
False
)
def
mean_test_nhwc
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
1
,
2
),
keepdims
=
True
,
name
=
'mean1'
)
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
1
,
2
),
keepdims
=
False
,
name
=
'mean2'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'mean_test_nhwc.pb'
,
as_text
=
False
)
def
mul_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
16
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
16
),
name
=
'1'
)
tf
.
multiply
(
g1_input
,
g2_input
,
name
=
'mul1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'mul_test.pb'
,
as_text
=
False
)
def
pack_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'1'
)
g3_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'2'
)
tf
.
stack
([
g1_input
,
g2_input
,
g3_input
],
axis
=
1
,
name
=
'pack1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'pack_test.pb'
,
as_text
=
False
)
def
pack_test_nhwc
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'1'
)
g3_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'2'
)
tf
.
stack
([
g1_input
,
g2_input
,
g3_input
],
axis
=
3
,
name
=
'pack1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'pack_test_nhwc.pb'
,
as_text
=
False
)
def
pooling_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
tf
.
nn
.
avg_pool
(
value
=
g1_input
,
ksize
=
(
1
,
2
,
2
,
1
),
strides
=
(
1
,
2
,
2
,
1
),
padding
=
'VALID'
,
data_format
=
'NHWC'
,
name
=
'avg_pooling'
)
tf
.
nn
.
max_pool
(
value
=
g1_input
,
ksize
=
(
1
,
2
,
2
,
1
),
strides
=
(
1
,
2
,
2
,
1
),
padding
=
'VALID'
,
data_format
=
'NHWC'
,
name
=
'max_pooling'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'pooling_test.pb'
,
as_text
=
False
)
def
pow_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
pow
(
g1_input
,
g2_input
,
name
=
'pow1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'pow_test.pb'
,
as_text
=
False
)
def
relu_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
nn
.
relu
(
g1_input
,
'relu'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'relu_test.pb'
,
as_text
=
False
)
def
relu6_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
nn
.
relu6
(
g1_input
,
'relu6'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'relu6_test.pb'
,
as_text
=
False
)
def
reshape_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
16
),
name
=
'0'
)
tf
.
reshape
(
g1_input
,
(
1
,
1
,
1
,
16
),
'reshape'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'reshape_test.pb'
,
as_text
=
False
)
def
rsqrt_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
math
.
rsqrt
(
g1_input
,
'rsqrt'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'rsqrt_test.pb'
,
as_text
=
False
)
def
slice_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
5
,
10
),
name
=
'0'
)
tf
.
slice
(
g1_input
,
[
1
,
0
],
[
2
,
-
1
],
name
=
'slice1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'slice_test.pb'
,
as_text
=
False
)
def
softmax_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
),
name
=
'0'
)
tf
.
nn
.
softmax
(
g1_input
,
name
=
'softmax'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'softmax_test.pb'
,
as_text
=
False
)
def
sqdiff_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
squared_difference
(
g1_input
,
g2_input
,
name
=
'sqdiff'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'sqdiff_test.pb'
,
as_text
=
False
)
def
squeeze_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
3
,
1
),
name
=
'0'
)
tf
.
squeeze
(
g1_input
,
name
=
'squeeze'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'squeeze_test.pb'
,
as_text
=
False
)
def
stopgradient_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
stop_gradient
(
g1_input
,
'stopgradient'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'stopgradient_test.pb'
,
as_text
=
False
)
def
stridedslice_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
10
),
name
=
'0'
)
tf
.
strided_slice
(
g1_input
,
[
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
5
],
[
1
,
1
,
1
,
1
],
shrink_axis_mask
=
2
,
name
=
'stridedslice1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'stridedslice_test.pb'
,
as_text
=
False
)
def
stridedslice_masks_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
3
,
10
),
name
=
'0'
)
tf
.
strided_slice
(
g1_input
,
[
0
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
],
begin_mask
=
9
,
end_mask
=
15
,
name
=
'stridedslice1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'stridedslice_masks_test.pb'
,
as_text
=
False
)
def
sub_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
subtract
(
g1_input
,
g2_input
,
name
=
'sub1'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'sub_test.pb'
,
as_text
=
False
)
def
tanh_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
tanh
(
g1_input
,
'tanh'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'tanh_test.pb'
,
as_text
=
False
)
def
transpose_test
(
g1
=
tf
.
Graph
()):
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
transpose
(
g1_input
,
perm
=
[
0
,
2
,
3
,
1
],
name
=
'transpose'
)
tf
.
train
.
write_graph
(
g1
,
'.'
,
'transpose_test.pb'
,
as_text
=
False
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment