"src/vscode:/vscode.git/clone" did not exist on "83ba01a38d94466ab16ab99c0d2bd74e463561de"
Commit 4295961c authored by Khalique's avatar Khalique
Browse files

formatting

parent 53349569
This diff is collapsed.
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
def tf_test(op_test): def tf_test(op_test):
def run_test(): def run_test():
g1 = tf.Graph() g1 = tf.Graph()
op_test(g1) op_test(g1)
tf.io.write_graph(g1, '.', '{}.pb'.format(op_test.__name__), as_text=False) tf.io.write_graph(g1,
'.',
'{}.pb'.format(op_test.__name__),
as_text=False)
return run_test return run_test
@tf_test @tf_test
def add_test(g1): def add_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1') g2_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='1')
tf.add(g1_input, g2_input, name = 'add1') tf.add(g1_input, g2_input, name='add1')
@tf_test @tf_test
def add_bcast_test(g1): def add_bcast_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(2, 3), name='0')
g2_input = tf.placeholder(tf.float32, shape=(2,1), name = '1') g2_input = tf.placeholder(tf.float32, shape=(2, 1), name='1')
tf.math.add(g1_input, g2_input, name = 'add_bcast1') tf.math.add(g1_input, g2_input, name='add_bcast1')
@tf_test @tf_test
def assert_less_equal_test(g1): def assert_less_equal_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(2, 3), name='0')
g2_input = tf.placeholder(tf.float32, shape=(2,3), name = '1') g2_input = tf.placeholder(tf.float32, shape=(2, 3), name='1')
with tf.control_dependencies([tf.assert_less_equal(g1_input, g2_input)]): with tf.control_dependencies(
tf.add(g1_input, g2_input, name = 'add1') [tf.assert_less_equal(g1_input, g2_input)]):
tf.add(g1_input, g2_input, name='add1')
@tf_test @tf_test
def batchmatmul_test(g1): def batchmatmul_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,8,4), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 2, 8, 4), name='0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,4,8), name = '1') g2_input = tf.placeholder(tf.float32, shape=(1, 2, 4, 8), name='1')
tf.matmul(g1_input, g2_input, transpose_a=True, transpose_b=True, name='batchmatmul1') tf.matmul(g1_input,
g2_input,
transpose_a=True,
transpose_b=True,
name='batchmatmul1')
@tf_test @tf_test
def batchnorm_test(g1): def batchnorm_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1, 16, 16, 32), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 16, 16, 32), name='0')
g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name = '1') g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
g1_offset = tf.placeholder(tf.float32, shape=(32), name = '2') g1_offset = tf.placeholder(tf.float32, shape=(32), name='2')
g1_mean = tf.placeholder(tf.float32, shape=(32), name = '3') g1_mean = tf.placeholder(tf.float32, shape=(32), name='3')
g1_variance = tf.placeholder(tf.float32, shape=(32), name = '4') g1_variance = tf.placeholder(tf.float32, shape=(32), name='4')
tf.nn.fused_batch_norm( tf.nn.fused_batch_norm(g1_input,
g1_input, g1_scale, g1_offset, g1_mean, g1_variance, g1_scale,
epsilon=0.00001, is_training=False, name='batchnorm1' g1_offset,
) g1_mean,
g1_variance,
epsilon=0.00001,
is_training=False,
name='batchnorm1')
@tf_test @tf_test
def biasadd_test(g1): def biasadd_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,500), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 1, 1, 500), name='0')
g2_input = tf.placeholder(tf.float32, shape=(500), name = '1') g2_input = tf.placeholder(tf.float32, shape=(500), name='1')
tf.nn.bias_add(g1_input, g2_input, name = 'bias_add1') tf.nn.bias_add(g1_input, g2_input, name='bias_add1')
@tf_test @tf_test
def cast_test(g1): def cast_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.cast(g1_input, dtype=tf.int32, name='cast1') tf.cast(g1_input, dtype=tf.int32, name='cast1')
@tf_test @tf_test
def concat_test(g1): def concat_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(4,7,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(4, 7, 3), name='0')
g2_input = tf.placeholder(tf.float32, shape=(4,2,3), name = '1') g2_input = tf.placeholder(tf.float32, shape=(4, 2, 3), name='1')
tf.concat([g1_input, g2_input], axis=1, name = 'concat1') tf.concat([g1_input, g2_input], axis=1, name='concat1')
@tf_test @tf_test
def const_test(g1): def const_test(g1):
with g1.as_default(): with g1.as_default():
tf.constant(1.0, dtype=tf.float32 ,name='constant1') tf.constant(1.0, dtype=tf.float32, name='constant1')
@tf_test @tf_test
def conv_test(g1): def conv_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 16, 16, 3), name='0')
g1_weights = tf.constant(value=1.0, dtype=tf.float32, shape=(3,3,3,32), name = '1') g1_weights = tf.constant(value=1.0,
tf.nn.conv2d(g1_input, g1_weights, [1,1,1,1], "SAME", name = 'conv1') dtype=tf.float32,
shape=(3, 3, 3, 32),
name='1')
tf.nn.conv2d(g1_input, g1_weights, [1, 1, 1, 1], "SAME", name='conv1')
@tf_test @tf_test
def depthwiseconv_test(g1): def depthwiseconv_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 16, 16, 3), name='0')
g1_weights = tf.constant(value=1.0, dtype=tf.float32, shape=(3,3,3,1), name = '1') g1_weights = tf.constant(value=1.0,
tf.nn.depthwise_conv2d_native(g1_input, g1_weights, [1,1,1,1], "SAME", name = 'depthwiseconv1') dtype=tf.float32,
shape=(3, 3, 3, 1),
name='1')
tf.nn.depthwise_conv2d_native(g1_input,
g1_weights, [1, 1, 1, 1],
"SAME",
name='depthwiseconv1')
@tf_test @tf_test
def expanddims_test(g1): def expanddims_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,3,4), name = '0') g1_input = tf.placeholder(tf.float32, shape=(2, 3, 4), name='0')
tf.expand_dims(g1_input, axis=-1, name='expanddims_neg') tf.expand_dims(g1_input, axis=-1, name='expanddims_neg')
@tf_test @tf_test
def gather_test(g1): def gather_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,4), name = '0') g1_input = tf.placeholder(tf.float32, shape=(2, 4), name='0')
tf.gather(g1_input, [1,1], axis=1, name='gather1') tf.gather(g1_input, [1, 1], axis=1, name='gather1')
@tf_test @tf_test
def identity_test(g1): def identity_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.identity(g1_input, 'identity') tf.identity(g1_input, 'identity')
@tf_test @tf_test
def matmul_test(g1): def matmul_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(8,4), name = '0') g1_input = tf.placeholder(tf.float32, shape=(8, 4), name='0')
g2_input = tf.placeholder(tf.float32, shape=(4,8), name = '1') g2_input = tf.placeholder(tf.float32, shape=(4, 8), name='1')
tf.matmul(g1_input, g2_input, transpose_a=True, transpose_b=True, name='matmul1') tf.matmul(g1_input,
g2_input,
transpose_a=True,
transpose_b=True,
name='matmul1')
@tf_test @tf_test
def mean_test(g1): def mean_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.math.reduce_mean( tf.math.reduce_mean(g1_input, axis=(2, 3), keepdims=True, name='mean1')
g1_input, tf.math.reduce_mean(g1_input,
axis=(2,3), axis=(2, 3),
keepdims=True, keepdims=False,
name='mean1' name='mean2')
)
tf.math.reduce_mean(
g1_input,
axis=(2,3),
keepdims=False,
name='mean2'
)
@tf_test @tf_test
def mean_test_nhwc(g1): def mean_test_nhwc(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 16, 16, 3), name='0')
tf.math.reduce_mean( tf.math.reduce_mean(g1_input, axis=(1, 2), keepdims=True, name='mean1')
g1_input, tf.math.reduce_mean(g1_input,
axis=(1,2), axis=(1, 2),
keepdims=True, keepdims=False,
name='mean1' name='mean2')
)
tf.math.reduce_mean(
g1_input,
axis=(1,2),
keepdims=False,
name='mean2'
)
@tf_test @tf_test
def mul_test(g1): def mul_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 1, 1, 16), name='0')
g2_input = tf.placeholder(tf.float32, shape=(1,1,1,16), name = '1') g2_input = tf.placeholder(tf.float32, shape=(1, 1, 1, 16), name='1')
tf.multiply(g1_input, g2_input, name='mul1') tf.multiply(g1_input, g2_input, name='mul1')
@tf_test @tf_test
def pack_test(g1): def pack_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2), name = '0') g1_input = tf.placeholder(tf.float32, shape=(2), name='0')
g2_input = tf.placeholder(tf.float32, shape=(2), name = '1') g2_input = tf.placeholder(tf.float32, shape=(2), name='1')
g3_input = tf.placeholder(tf.float32, shape=(2), name = '2') g3_input = tf.placeholder(tf.float32, shape=(2), name='2')
tf.stack([g1_input, g2_input, g3_input], axis=1, name = 'pack1') tf.stack([g1_input, g2_input, g3_input], axis=1, name='pack1')
@tf_test @tf_test
def pack_test_nhwc(g1): def pack_test_nhwc(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,2), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 1, 1, 2), name='0')
g2_input = tf.placeholder(tf.float32, shape=(1,1,1,2), name = '1') g2_input = tf.placeholder(tf.float32, shape=(1, 1, 1, 2), name='1')
g3_input = tf.placeholder(tf.float32, shape=(1,1,1,2), name = '2') g3_input = tf.placeholder(tf.float32, shape=(1, 1, 1, 2), name='2')
tf.stack([g1_input, g2_input, g3_input], axis=3, name = 'pack1') tf.stack([g1_input, g2_input, g3_input], axis=3, name='pack1')
@tf_test @tf_test
def pooling_test(g1): def pooling_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 16, 16, 3), name='0')
tf.nn.avg_pool( tf.nn.avg_pool(value=g1_input,
value=g1_input, ksize=(1, 2, 2, 1),
ksize=(1,2,2,1), strides=(1, 2, 2, 1),
strides=(1,2,2,1), padding='VALID',
padding='VALID', data_format='NHWC',
data_format='NHWC', name='avg_pooling')
name='avg_pooling' tf.nn.max_pool(value=g1_input,
) ksize=(1, 2, 2, 1),
tf.nn.max_pool( strides=(1, 2, 2, 1),
value=g1_input, padding='VALID',
ksize=(1,2,2,1), data_format='NHWC',
strides=(1,2,2,1), name='max_pooling')
padding='VALID',
data_format='NHWC',
name='max_pooling'
)
@tf_test @tf_test
def pow_test(g1): def pow_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1') g2_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='1')
tf.pow(g1_input, g2_input, name = 'pow1') tf.pow(g1_input, g2_input, name='pow1')
@tf_test @tf_test
def relu_test(g1): def relu_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.nn.relu(g1_input, 'relu') tf.nn.relu(g1_input, 'relu')
@tf_test @tf_test
def relu6_test(g1): def relu6_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.nn.relu6(g1_input, 'relu6') tf.nn.relu6(g1_input, 'relu6')
@tf_test @tf_test
def reshape_test(g1): def reshape_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(16), name='0')
tf.reshape(g1_input, (1,1,1,16), 'reshape') tf.reshape(g1_input, (1, 1, 1, 16), 'reshape')
@tf_test @tf_test
def rsqrt_test(g1): def rsqrt_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.math.rsqrt(g1_input, 'rsqrt') tf.math.rsqrt(g1_input, 'rsqrt')
@tf_test @tf_test
def slice_test(g1): def slice_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(5,10), name = '0') g1_input = tf.placeholder(tf.float32, shape=(5, 10), name='0')
tf.slice(g1_input, [1, 0], [2, -1], name = 'slice1') tf.slice(g1_input, [1, 0], [2, -1], name='slice1')
@tf_test @tf_test
def softmax_test(g1): def softmax_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3), name='0')
tf.nn.softmax(g1_input, name='softmax') tf.nn.softmax(g1_input, name='softmax')
@tf_test @tf_test
def sqdiff_test(g1): def sqdiff_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1') g2_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='1')
tf.squared_difference(g1_input, g2_input, name = 'sqdiff') tf.squared_difference(g1_input, g2_input, name='sqdiff')
@tf_test @tf_test
def squeeze_test(g1): def squeeze_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,3,1), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 2, 3, 1), name='0')
tf.squeeze(g1_input, name='squeeze') tf.squeeze(g1_input, name='squeeze')
@tf_test @tf_test
def stopgradient_test(g1): def stopgradient_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.stop_gradient(g1_input, 'stopgradient') tf.stop_gradient(g1_input, 'stopgradient')
@tf_test @tf_test
def stridedslice_test(g1): def stridedslice_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,10), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 1, 1, 10), name='0')
tf.strided_slice(g1_input, [0, 0, 0, 0], [1, 1, 1, 5], [1,1,1,1], shrink_axis_mask=2, name = 'stridedslice1') tf.strided_slice(g1_input, [0, 0, 0, 0], [1, 1, 1, 5], [1, 1, 1, 1],
shrink_axis_mask=2,
name='stridedslice1')
@tf_test @tf_test
def stridedslice_masks_test(g1): def stridedslice_masks_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,3,10), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 3, 10), name='0')
tf.strided_slice(g1_input, [0, 1, 1, 0], [0, 0, 0, 0], [1,1,1,1], begin_mask=9, end_mask=15, name = 'stridedslice1') tf.strided_slice(g1_input, [0, 1, 1, 0], [0, 0, 0, 0], [1, 1, 1, 1],
begin_mask=9,
end_mask=15,
name='stridedslice1')
@tf_test @tf_test
def sub_test(g1): def sub_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1') g2_input = tf.placeholder(tf.float32, shape=(1, 2, 2, 3), name='1')
tf.subtract(g1_input, g2_input, name = 'sub1') tf.subtract(g1_input, g2_input, name='sub1')
@tf_test @tf_test
def tanh_test(g1): def tanh_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.tanh(g1_input, 'tanh') tf.tanh(g1_input, 'tanh')
@tf_test @tf_test
def transpose_test(g1): def transpose_test(g1):
with g1.as_default(): with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0') g1_input = tf.placeholder(tf.float32, shape=(1, 3, 16, 16), name='0')
tf.transpose(g1_input, perm=[0,2,3,1], name = 'transpose') tf.transpose(g1_input, perm=[0, 2, 3, 1], name='transpose')
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment