Commit 2d827e27 authored by mei-ye's avatar mei-ye
Browse files

more coding conventions fix

parents 371a0f29 4f8eb0e2
......@@ -10,16 +10,25 @@ namespace migraph {
namespace gpu {
namespace device {
template <class... Arguments>
auto nary(argument result, Arguments... args)
template <class T>
using vec4 = T __attribute__((ext_vector_type(4)));
template <class T>
__device__ __host__ vec4<T>* as_vec4(T* x)
{
return [=](auto f) {
if(all_of({args...}, [](const shape& s) { return s.standard(); }))
nary_standard(result, args...)(f);
else
nary_nonstandard(result, args...)(f);
return reinterpret_cast<vec4<T>*>(x);
}
};
template <class T>
__device__ __host__ T* as_pointer(vec4<T>* x)
{
return reinterpret_cast<T*>(x);
}
template <class... Ts>
auto pack_vec4(Ts... xs)
{
return [=](auto f, std::size_t n) { return f(as_vec4(xs)[n]...); };
}
template <class F, class... Arguments>
......@@ -28,14 +37,12 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args)
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
visit_tensor_size(output_shape.lens().size(), [&](auto ndim) {
auto data = make_sequence(
std::make_pair(hip_tensor_descriptor<ndim>{inputs.get_shape().lens(),
inputs.get_shape().strides()},
inputs.data())...);
hip_tensor_descriptor<ndim> out_desc(output_shape.lens(), output_shape.strides());
auto data = pack(
std::make_pair(hip_tensor_descriptor<ndim>{inputs.get_shape()}, inputs.data())...);
hip_tensor_descriptor<ndim> out_desc(output_shape);
auto* outp = output.data();
gs_launch(output_shape.elements())([=](auto i) {
data([&](auto... ps) {
data([&](auto&&... ps) {
auto outidx = out_desc.multi(i);
outp[i] = f(ps.second[ps.first.linear(outidx)]...);
});
......@@ -44,24 +51,199 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args)
});
}
template <class F>
void binary_broadcast_vec_impl(F f,
const argument& result,
const argument& arg1,
const argument& arg2)
{
const auto& output_shape = result.get_shape();
const auto& b_shape = arg2.get_shape();
auto bdim =
std::distance(b_shape.strides().begin(),
std::find_if(b_shape.strides().begin(), b_shape.strides().end(), [](auto x) {
return x != 0;
}));
auto bdim_len = output_shape.lens()[bdim];
auto bdim_stride = output_shape.strides()[bdim];
auto bdim_next_stride = bdim_stride * bdim_len;
visit_all(result, arg1, arg2)([&](auto output, auto input1, auto input2) {
using type = std::remove_cv_t<typename decltype(output)::value_type>;
auto* xp = as_vec4(input1.data());
auto* yp = as_vec4(input2.data());
auto* outp = as_vec4(output.data());
const std::size_t vec_size = 4;
const std::size_t nlocal = 1024;
const std::size_t nglobal = 256 * nlocal;
const std::size_t n = output.size() / vec_size;
const std::size_t bdim_vec_len = bdim_len / vec_size;
launch(nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED vec4<type> buffer[2048 / vec_size];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_vec_len; i += nlocal)
{
buffer[i] = yp[i];
}
__syncthreads();
auto* bp = as_pointer(buffer);
// Process the data
for(size_t i = idx.global; i < n; i += nglobal)
{
auto bidx = ((i * vec_size) % bdim_next_stride) / bdim_stride;
auto b = bp[bidx];
vec4<type> x = xp[i];
vec4<type> out = outp[i];
for(std::size_t j = 0; j < vec_size; j++)
{
out[j] = f(x[j], b);
}
outp[i] = out;
}
});
});
}
template <class F>
void binary_broadcast_impl(F f, const argument& result, const argument& arg1, const argument& arg2)
{
const auto& output_shape = result.get_shape();
const auto& b_shape = arg2.get_shape();
auto bdim =
std::distance(b_shape.strides().begin(),
std::find_if(b_shape.strides().begin(), b_shape.strides().end(), [](auto x) {
return x != 0;
}));
auto bdim_len = output_shape.lens()[bdim];
auto bdim_stride = output_shape.strides()[bdim];
auto bdim_next_stride = bdim_stride * bdim_len;
visit_all(result, arg1, arg2)([&](auto output, auto input1, auto input2) {
using type = std::remove_cv_t<typename decltype(output)::value_type>;
auto* xp = input1.data();
auto* yp = input2.data();
auto* outp = output.data();
const std::size_t nlocal = 1024;
const std::size_t nglobal = 256 * nlocal;
const std::size_t n = output.size();
launch(nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED type buffer[2048];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_len; i += nlocal)
{
buffer[i] = yp[i];
}
__syncthreads();
// Process the data
for(size_t i = idx.global; i < n; i += nglobal)
{
auto bidx = (i % bdim_next_stride) / bdim_stride;
auto b = buffer[bidx];
type x = xp[i];
outp[i] = f(x, b);
}
});
});
}
template <class F, class... Arguments>
void nary_standard_vec_impl(F f, argument result, Arguments... args)
{
// assert(x.get_shape().elements() == y.get_shape().elements());
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
using type = std::remove_cv_t<typename decltype(output)::value_type>;
const std::size_t vec_size = 4;
auto data = pack_vec4(inputs.data()...);
auto* outp = as_vec4(output.data());
gs_launch(output_shape.elements() / vec_size)([=](auto i) {
vec4<type> out = outp[i];
data(
[&](auto... xs) {
for(std::size_t j = 0; j < vec_size; j++)
{
out[j] = f(xs[j]...);
}
},
i);
outp[i] = out;
});
});
}
template <class F, class... Arguments>
void nary_standard_impl(F f, argument result, Arguments... args)
{
// assert(x.get_shape().elements() == y.get_shape().elements());
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
auto data = pack(inputs.data()...);
auto* outp = output.data();
gs_launch(output_shape.elements())(
[=](auto i) { data([&](auto... xps) { outp[i] = f(xps[i]...); }); });
});
}
template <class F, class... Arguments>
void nary_impl(F f, argument result, Arguments... args)
{
bool standard = all_of({args.get_shape()...}, [](const shape& s) { return s.standard(); });
bool packed = all_of({args.get_shape()...}, [](const shape& s) { return s.packed(); });
bool same_shapes =
all_of({args.get_shape()...}, [&](const shape& s) { return s == result.get_shape(); });
if(standard or (packed and same_shapes))
nary_standard_impl(f, result, args...);
else
nary_nonstandard_impl(f, result, args...);
}
template <class... Arguments>
auto nary_nonstandard(argument result, Arguments... args)
{
return [=](auto f) { return nary_nonstandard_impl(f, result, args...); };
return [=](auto f) { nary_nonstandard_impl(f, result, args...); };
}
template <class... Arguments>
auto nary_standard(argument result, Arguments... args)
{
return [=](auto f) { nary_standard_impl(f, result, args...); };
}
template <class... Arguments>
auto nary(argument result, Arguments... args)
{
return [=](auto f) { nary_impl(f, result, args...); };
}
inline auto nary(const argument& result, const argument& arg1, const argument& arg2)
{
return [=](auto f) {
// assert(x.get_shape().elements() == y.get_shape().elements());
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
auto data = make_sequence(inputs.data()...);
auto* outp = output.data();
gs_launch(output_shape.elements())(
[=](auto i) { data([&](auto... xps) { outp[i] = f(xps[i]...); }); });
});
// TODO: Check result and arg1 shape is the same
if(arg1.get_shape().standard() and arg2.get_shape().broadcasted())
{
auto not_zero = [](auto x) { return x != 0; };
const auto& strides = arg2.get_shape().strides();
auto b_it = std::find_if(strides.begin(), strides.end(), not_zero);
auto b_idx = std::distance(strides.begin(), b_it);
auto b_len = result.get_shape().lens()[b_idx];
auto b_stride = result.get_shape().strides()[b_idx];
assert(arg2.get_shape().lens()[b_idx] == b_len);
if(b_len <= 2048 and std::none_of(std::next(b_it), strides.end(), not_zero))
{
const bool divisible_by_4 = (b_len % 4 == 0) and (b_stride % 4 == 0) and
(arg1.get_shape().elements() % 4 == 0);
if(divisible_by_4)
binary_broadcast_vec_impl(f, result, arg1, arg2);
else
binary_broadcast_impl(f, result, arg1, arg2);
return;
}
}
nary_impl(f, result, arg1, arg2);
};
}
......
......@@ -2,6 +2,7 @@
#define MIGRAPH_GUARD_RTGLIB_DEAVICE_TENSOR_HPP
#include <hip/hip_runtime.h>
#include <migraph/functional.hpp>
namespace migraph {
namespace gpu {
......@@ -53,14 +54,13 @@ template <size_t NDim>
struct hip_tensor_descriptor
{
__device__ __host__ hip_tensor_descriptor() = default;
template <typename T, typename V>
__device__ __host__ hip_tensor_descriptor(const T& lens_ext, const V& strides_ext)
hip_tensor_descriptor(const shape& s)
{
for(size_t i = 0; i < NDim; i++)
lens[i] = lens_ext[i];
for(size_t i = 0; i < NDim; i++)
strides[i] = strides_ext[i];
std::copy(s.lens().begin(), s.lens().end(), lens);
std::copy(s.strides().begin(), s.strides().end(), strides);
}
__device__ __host__ hip_index<NDim> multi(size_t idx) const
{
hip_index<NDim> result{};
......
......@@ -20,7 +20,7 @@ void eliminate_allocation::apply(program& p) const
continue;
allocs.emplace_back(ins, n);
std::size_t size = ins->get_shape().bytes();
n += size + (size % 4);
n += size + (size % 32);
}
auto mem = p.add_parameter("memory", shape{shape::int8_type, {n}});
for(auto&& pp : allocs)
......
......@@ -12,7 +12,7 @@ struct hip_add_relu
std::string name() const { return "hip::add_relu"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs}.has(3).standard();
check_shapes{inputs, *this}.has(3);
return inputs.front();
}
argument compute(context&, const shape&, const std::vector<argument>& args) const
......
#ifndef MIGRAPH_GUARD_RTGLIB_DEVICE_ADD_HPP
#define MIGRAPH_GUARD_RTGLIB_DEVICE_ADD_HPP
#include <migraph/argument.hpp>
namespace migraph {
namespace gpu {
namespace device {
void add(const argument& result, const argument& arg1, const argument& arg2);
} // namespace device
} // namespace gpu
} // namespace migraph
#endif
......@@ -8,7 +8,7 @@ namespace migraph {
namespace gpu {
namespace device {
void add_relu(argument result, argument arg1, argument arg2);
void add_relu(const argument& result, const argument& arg1, const argument& arg2);
} // namespace device
} // namespace gpu
......
......@@ -9,6 +9,7 @@
#include <migraph/gpu/hip.hpp>
#include <migraph/dfor.hpp>
#include <migraph/gpu/device/contiguous.hpp>
#include <migraph/gpu/device/add.hpp>
#include <migraph/iterator_for.hpp>
#include <migraph/gpu/rocblas.hpp>
#include <migraph/gpu/context.hpp>
......@@ -170,6 +171,23 @@ struct miopen_pooling
}
};
struct hip_add
{
std::string name() const { return "gpu::add"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
// check_shapes{inputs, *this}.has(3).standard();
check_shapes{inputs, *this}.has(3);
return inputs.at(0);
}
argument compute(context&, const shape&, const std::vector<argument>& args) const
{
device::add(args[2], args[0], args[1]);
return args[2];
}
};
struct miopen_add
{
std::string name() const { return "gpu::add"; }
......@@ -204,7 +222,7 @@ struct miopen_add
struct miopen_gemm
{
gemm op;
std::string name() const { return "gpu::convolution"; }
std::string name() const { return "gpu::gemm"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(3);
......@@ -339,7 +357,7 @@ struct miopen_apply
instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
{
if(ins == --prog->end())
if(ins == --prog->end() and not tag.empty())
{
return prog->add_parameter("output", s);
}
......@@ -392,7 +410,7 @@ struct miopen_apply
{
auto output = insert_allocation(ins, ins->result);
return prog->replace_instruction(
ins, miopen_add{}, ins->arguments.at(0), ins->arguments.at(1), output);
ins, hip_add{}, ins->arguments.at(0), ins->arguments.at(1), output);
}
instruction_ref apply_gemm(instruction_ref ins)
......
......@@ -11,6 +11,7 @@
#include <migraph/dead_code_elimination.hpp>
#include <migraph/simplify_reshapes.hpp>
#include <migraph/eliminate_contiguous.hpp>
#include <migraph/fwd_conv_batchnorm_rewrite.hpp>
namespace migraph {
namespace gpu {
......@@ -21,6 +22,8 @@ std::vector<pass> target::get_passes(migraph::context& gctx) const
// clang-format off
return
{
dead_code_elimination{},
fwd_conv_batchnorm_rewrite{},
dead_code_elimination{},
auto_contiguous{},
simplify_reshapes{},
......
......@@ -8,7 +8,7 @@
#include <migraph/gpu/hip.hpp>
#include <migraph/manage_ptr.hpp>
#include <migraph/type_name.hpp>
#include <migraph/verify.hpp>
#include <migraph/verify_args.hpp>
#include <miopen/miopen.h>
......@@ -77,6 +77,12 @@ struct auto_print
};
std::array<std::function<void()>, 2> auto_print::handlers = {};
template <class T>
auto get_hash(const T& x)
{
return std::hash<T>{}(x);
}
void compile_check(migraph::program& p, const migraph::target& t)
{
auto name = t.name();
......@@ -100,7 +106,7 @@ migraph::argument run_cpu()
migraph::program::parameter_map m;
for(auto&& x : p.get_parameter_shapes())
{
m[x.first] = migraph::generate_argument(x.second);
m[x.first] = migraph::generate_argument(x.second, get_hash(x.first));
}
return p.eval(m);
}
......@@ -112,52 +118,15 @@ migraph::argument run_gpu()
auto p = v.create_program();
auto_print pp{p, 1};
compile_check(p, migraph::gpu::target{});
migraph::program::parameter_map m;
for(auto&& x : p.get_parameter_shapes())
{
m[x.first] = migraph::gpu::to_gpu(migraph::generate_argument(x.second));
m[x.first] = migraph::gpu::to_gpu(migraph::generate_argument(x.second, get_hash(x.first)));
}
return migraph::gpu::from_gpu(p.eval(m));
}
void verify_args(const std::string& name,
const migraph::argument& cpu_arg,
const migraph::argument& gpu_arg)
{
visit_all(cpu_arg, gpu_arg)([&](auto cpu, auto gpu) {
if(not migraph::verify_range(cpu, gpu))
{
// TODO: Check for nans
std::cout << "FAILED: " << name << std::endl;
// std::cout << cpu << std::endl;
// std::cout << gpu << std::endl;
if(migraph::range_zero(cpu))
std::cout << "Cpu data is all zeros" << std::endl;
if(migraph::range_zero(gpu))
std::cout << "Gpu data is all zeros" << std::endl;
auto idx = migraph::mismatch_idx(cpu, gpu, migraph::float_equal);
if(idx < migraph::range_distance(cpu))
{
std::cout << "Mismatch at " << idx << ": " << cpu[idx] << " != " << gpu[idx]
<< std::endl;
}
auto cpu_nan_idx = find_idx(cpu, migraph::not_finite);
if(cpu_nan_idx >= 0)
std::cout << "Non finite number found in cpu at " << cpu_nan_idx << ": "
<< cpu[cpu_nan_idx] << std::endl;
auto gpu_nan_idx = find_idx(gpu, migraph::not_finite);
if(gpu_nan_idx >= 0)
std::cout << "Non finite number found in gpu at " << gpu_nan_idx << ": "
<< gpu[gpu_nan_idx] << std::endl;
}
});
}
template <class V>
void verify_program()
{
......@@ -210,6 +179,62 @@ struct test_add_broadcast
}
};
struct test_add_broadcast2
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 3, 4}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {3}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_add_broadcast3
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 4, 5}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {4}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_add_broadcast4
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 3, 5}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {3}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_add_broadcast5
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 4, 8}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {4}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_conv_relu
{
migraph::program create_program() const
......@@ -414,10 +439,49 @@ struct test_conv_bn_relu_pooling
}
};
struct test_conv_bn_relu_pooling2
{
static migraph::instruction_ref
add_bn(migraph::program& p, migraph::instruction_ref x, std::size_t channels)
{
migraph::shape vars{migraph::shape::float_type, {channels}};
auto scale = p.add_literal(migraph::abs(migraph::generate_literal(vars, 1 + channels)));
auto bias = p.add_literal(migraph::abs(migraph::generate_literal(vars, 2 + channels)));
auto mean = p.add_literal(migraph::abs(migraph::generate_literal(vars, 3 + channels)));
auto variance = p.add_literal(migraph::abs(migraph::generate_literal(vars, 4 + channels)));
return p.add_instruction(migraph::batch_norm_inference{}, x, scale, bias, mean, variance);
}
migraph::program create_program() const
{
migraph::program p;
migraph::shape xs1{migraph::shape::float_type, {1, 512, 7, 7}};
migraph::shape xs2{migraph::shape::float_type, {1, 1024, 14, 14}};
migraph::shape ws1{migraph::shape::float_type, {2048, 512, 1, 1}};
migraph::shape ws2{migraph::shape::float_type, {2048, 1024, 1, 1}};
auto x1 = p.add_parameter("x1", xs1);
auto w1 = p.add_parameter("w1", ws1);
auto conv1 = p.add_instruction(migraph::convolution{{0, 0}, {1, 1}, {1, 1}}, x1, w1);
auto bn1 = add_bn(p, conv1, 2048);
auto x2 = p.add_parameter("x2", xs2);
auto w2 = p.add_parameter("w2", ws2);
auto conv2 = p.add_instruction(migraph::convolution{{0, 0}, {2, 2}, {1, 1}}, x2, w2);
auto bn2 = add_bn(p, conv2, 2048);
auto add = p.add_instruction(migraph::add{}, bn1, bn2);
auto relu = p.add_instruction(migraph::activation{"relu"}, add);
p.add_instruction(migraph::pooling{"average", {1, 1}, {2, 2}, {3, 3}}, relu);
return p;
}
};
int main()
{
verify_program<test_add>();
verify_program<test_add_broadcast>();
verify_program<test_add_broadcast2>();
verify_program<test_add_broadcast3>();
verify_program<test_add_broadcast4>();
verify_program<test_add_broadcast5>();
verify_program<test_conv_relu>();
verify_program<test_add_relu>();
verify_program<test_conv_pooling>();
......@@ -431,4 +495,5 @@ int main()
verify_program<test_batchnorm_inference>();
verify_program<test_batchnorm_inference_2>();
verify_program<test_conv_bn_relu_pooling>();
verify_program<test_conv_bn_relu_pooling2>();
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment