Commit 2d827e27 authored by mei-ye's avatar mei-ye
Browse files

more coding conventions fix

parents 371a0f29 4f8eb0e2
...@@ -3,6 +3,7 @@ add_library(migraph ...@@ -3,6 +3,7 @@ add_library(migraph
auto_contiguous.cpp auto_contiguous.cpp
dead_code_elimination.cpp dead_code_elimination.cpp
eliminate_contiguous.cpp eliminate_contiguous.cpp
fwd_conv_batchnorm_rewrite.cpp
env.cpp env.cpp
generate.cpp generate.cpp
program.cpp program.cpp
......
#include <migraph/fwd_conv_batchnorm_rewrite.hpp>
#include <migraph/program.hpp>
#include <migraph/instruction.hpp>
#include <migraph/operators.hpp>
#include <migraph/iterator_for.hpp>
#include <migraph/dfor.hpp>
namespace migraph {
void fwd_conv_batchnorm_rewrite::apply(program& p) const
{
for(auto ins : iterator_for(p))
{
if(ins->op.name() != "batch_norm_inference")
continue;
if(not std::all_of(ins->arguments.begin() + 1, ins->arguments.end(), [](auto arg) {
return arg->op.name() == "@literal";
}))
continue;
auto conv_ins = ins->arguments[0];
if(conv_ins->op.name() != "convolution")
continue;
if(conv_ins->arguments[1]->op.name() != "@literal")
continue;
// Get scale, bias, mean, variance from instruction_ref
const auto& gamma = ins->arguments[1]->get_literal();
const auto& bias = ins->arguments[2]->get_literal();
const auto& mean = ins->arguments[3]->get_literal();
const auto& variance = ins->arguments[4]->get_literal();
// Get epsilon
auto bn_op = any_cast<batch_norm_inference>(ins->op);
auto epsilon = bn_op.epsilon;
// Get convolution weights
const auto& weights = conv_ins->arguments[1]->get_literal();
// Get convolution op
auto conv_op = conv_ins->op;
auto weights_lens = weights.get_shape().lens();
auto conv_lens = conv_ins->get_shape().lens();
argument new_weights{weights.get_shape()};
argument new_bias{bias.get_shape()};
visit_all(weights, gamma, bias, mean, variance, new_weights, new_bias)(
[&](auto weights2,
auto gamma2,
auto bias2,
auto mean2,
auto variance2,
auto new_weights2,
auto new_bias2) {
dfor(weights_lens[0], weights_lens[1], weights_lens[2], weights_lens[3])(
[&](std::size_t k, std::size_t c, std::size_t h, std::size_t w) {
new_weights2(k, c, h, w) =
gamma2(k) / std::sqrt(variance2(k) + epsilon) * weights2(k, c, h, w);
});
dfor(new_bias.get_shape().elements())([&](std::size_t c) {
new_bias2(c) = bias2(c) - (mean2(c) / std::sqrt(variance2(c) + epsilon));
});
});
// Replace convolution instruction with updated weights
auto l_weights = p.add_literal({weights.get_shape(), new_weights.data()});
auto l_bias = p.add_literal({new_bias.get_shape(), new_bias.data()});
auto c = p.replace_instruction(conv_ins, conv_op, {conv_ins->arguments[0], l_weights});
auto b = p.insert_instruction(ins, broadcast{1}, c, l_bias);
p.replace_instruction(ins, add{}, {c, b});
}
}
} // namespace migraph
...@@ -5,6 +5,14 @@ ...@@ -5,6 +5,14 @@
namespace migraph { namespace migraph {
struct swallow
{
template <class... Ts>
constexpr swallow(Ts&&...)
{
}
};
namespace detail { namespace detail {
template <class R, class F> template <class R, class F>
...@@ -19,8 +27,48 @@ struct fix_f ...@@ -19,8 +27,48 @@ struct fix_f
} }
}; };
template <std::size_t...>
struct seq
{
using type = seq;
};
template <class, class>
struct merge_seq;
template <std::size_t... Xs, std::size_t... Ys>
struct merge_seq<seq<Xs...>, seq<Ys...>> : seq<Xs..., (sizeof...(Xs) + Ys)...>
{
};
template <std::size_t N>
struct gens : merge_seq<typename gens<N / 2>::type, typename gens<N - N / 2>::type>
{
};
template <>
struct gens<0> : seq<>
{
};
template <>
struct gens<1> : seq<0>
{
};
template <class F, std::size_t... Ns>
constexpr void repeat_c_impl(F f, seq<Ns...>)
{
swallow{(f(std::integral_constant<std::size_t, Ns>{}), 0)...};
}
} // namespace detail } // namespace detail
template <std::size_t N, class F>
constexpr void repeat_c(F f)
{
detail::repeat_c_impl(f, detail::gens<N>{});
}
/// Implements a fix-point combinator /// Implements a fix-point combinator
template <class R, class F> template <class R, class F>
detail::fix_f<R, F> fix(F f) detail::fix_f<R, F> fix(F f)
...@@ -35,7 +83,7 @@ auto fix(F f) ...@@ -35,7 +83,7 @@ auto fix(F f)
} }
template <class... Ts> template <class... Ts>
auto make_sequence(Ts... xs) auto pack(Ts... xs)
{ {
return [=](auto f) { return f(xs...); }; return [=](auto f) { return f(xs...); };
} }
......
#ifndef MIGRAPH_GUARD_RTGLIB_FWD_CONV_BATCHNORM_REWRITE_HPP
#define MIGRAPH_GUARD_RTGLIB_FWD_CONV_BATCHNORM_REWRITE_HPP
#include <string>
#include <migraph/instruction_ref.hpp>
namespace migraph {
struct program;
struct fwd_conv_batchnorm_rewrite
{
std::string name() const { return "fwd_conv_batchnorm_rewrite"; }
void apply(program& p) const;
};
} // namespace migraph
#endif
...@@ -12,7 +12,11 @@ constexpr T normalize(unsigned long z) ...@@ -12,7 +12,11 @@ constexpr T normalize(unsigned long z)
{ {
if(z == 0) if(z == 0)
return 0; return 0;
return (2.0 / z) - 1.0; const auto max = 2048;
const double range = max / 2; // NOLINT
double result = (z % max) / range;
result -= 1;
return result;
} }
template <class T, MIGRAPH_REQUIRES(std::is_signed<T>{} and not std::is_floating_point<T>{})> template <class T, MIGRAPH_REQUIRES(std::is_signed<T>{} and not std::is_floating_point<T>{})>
...@@ -54,11 +58,29 @@ struct xorshf96_generator ...@@ -54,11 +58,29 @@ struct xorshf96_generator
} }
}; };
template <class T>
struct xorshift_generator
{
unsigned long x;
xorshift_generator(unsigned long seed = 0) : x(521288629ULL ^ seed) {}
constexpr T operator()() noexcept
{
x ^= x >> 12U;
x ^= x << 25U;
x ^= x >> 27U;
return normalize<T>(x * 0x2545F4914F6CDD1D);
}
};
template <class T> template <class T>
std::vector<T> generate_tensor_data(const migraph::shape& s, unsigned long seed = 0) std::vector<T> generate_tensor_data(const migraph::shape& s, unsigned long seed = 0)
{ {
std::vector<T> result(s.elements()); std::vector<T> result(s.elements());
std::generate(result.begin(), result.end(), xorshf96_generator<T>{seed}); std::generate(result.begin(), result.end(), xorshf96_generator<T>{seed});
// std::generate(result.begin(), result.end(), [&]{ return seed % 7; });
// std::generate(result.begin(), result.end(), []{ return 1; });
return result; return result;
} }
......
...@@ -115,6 +115,11 @@ struct instruction ...@@ -115,6 +115,11 @@ struct instruction
} }
shape get_shape() const { return result; } shape get_shape() const { return result; }
const literal& get_literal() const
{
assert(op.name() == "@literal");
return lit;
}
friend bool operator==(instruction_ref ref, const instruction& i) { return i == ref; } friend bool operator==(instruction_ref ref, const instruction& i) { return i == ref; }
......
...@@ -2,17 +2,10 @@ ...@@ -2,17 +2,10 @@
#define MIGRAPH_GUARD_RTGLIB_TRACER_HPP #define MIGRAPH_GUARD_RTGLIB_TRACER_HPP
#include <ostream> #include <ostream>
#include <migraph/functional.hpp>
namespace migraph { namespace migraph {
struct swallow
{
template <class... Ts>
swallow(Ts&&...)
{
}
};
struct tracer struct tracer
{ {
tracer() {} tracer() {}
......
...@@ -162,10 +162,12 @@ double rms_range(R1&& r1, R2&& r2) ...@@ -162,10 +162,12 @@ double rms_range(R1&& r1, R2&& r2)
} }
template <class R1, class R2> template <class R1, class R2>
bool verify_range(R1&& r1, R2&& r2, double tolerance = 80) bool verify_range(R1&& r1, R2&& r2, double tolerance = 80, double* out_error = nullptr)
{ {
double threshold = std::numeric_limits<range_value<R1>>::epsilon() * tolerance; double threshold = std::numeric_limits<range_value<R1>>::epsilon() * tolerance;
auto error = rms_range(r1, r2); auto error = rms_range(r1, r2);
if(out_error != nullptr)
*out_error = error;
return error <= threshold; return error <= threshold;
} }
} // namespace migraph } // namespace migraph
......
#ifndef MIGRAPH_GUARD_RTGLIB_VERIFY_ARGS_HPP
#define MIGRAPH_GUARD_RTGLIB_VERIFY_ARGS_HPP
#include <migraph/verify.hpp>
#include <migraph/argument.hpp>
namespace migraph {
inline void verify_args(const std::string& name,
const argument& cpu_arg,
const argument& gpu_arg,
double tolerance = 80)
{
visit_all(cpu_arg, gpu_arg)([&](auto cpu, auto gpu) {
double error;
if(not verify_range(cpu, gpu, tolerance, &error))
{
// TODO: Check for nans
std::cout << "FAILED: " << name << std::endl;
std::cout << "error: " << error << std::endl;
if(cpu.size() < 32)
std::cout << "cpu:" << cpu << std::endl;
if(gpu.size() < 32)
std::cout << "gpu:" << gpu << std::endl;
if(range_zero(cpu))
std::cout << "Cpu data is all zeros" << std::endl;
if(range_zero(gpu))
std::cout << "Gpu data is all zeros" << std::endl;
auto idx = mismatch_idx(cpu, gpu, float_equal);
if(idx < range_distance(cpu))
{
std::cout << "Mismatch at " << idx << ": " << cpu[idx] << " != " << gpu[idx]
<< std::endl;
}
auto cpu_nan_idx = find_idx(cpu, not_finite);
if(cpu_nan_idx >= 0)
std::cout << "Non finite number found in cpu at " << cpu_nan_idx << ": "
<< cpu[cpu_nan_idx] << std::endl;
auto gpu_nan_idx = find_idx(gpu, not_finite);
if(gpu_nan_idx >= 0)
std::cout << "Non finite number found in gpu at " << gpu_nan_idx << ": "
<< gpu[gpu_nan_idx] << std::endl;
std::cout << std::endl;
}
});
}
} // namespace migraph
#endif
...@@ -17,11 +17,15 @@ rocm_clang_tidy_check(read_onnx) ...@@ -17,11 +17,15 @@ rocm_clang_tidy_check(read_onnx)
target_link_libraries(read_onnx migraph_onnx) target_link_libraries(read_onnx migraph_onnx)
if(MIGRAPH_ENABLE_GPU)
add_executable(mnist mnist.cpp) add_executable(mnist mnist.cpp)
rocm_clang_tidy_check(mnist) rocm_clang_tidy_check(mnist)
target_link_libraries(mnist migraph_cpu migraph_onnx) target_link_libraries(mnist migraph_cpu migraph_gpu migraph_onnx)
add_executable(cifar10 cifar10.cpp)
rocm_clang_tidy_check(cifar10)
target_link_libraries(cifar10 migraph_cpu migraph_gpu migraph_onnx)
if(MIGRAPH_ENABLE_GPU)
add_executable(verify_onnx verify_onnx.cpp) add_executable(verify_onnx verify_onnx.cpp)
rocm_clang_tidy_check(verify_onnx) rocm_clang_tidy_check(verify_onnx)
target_link_libraries(verify_onnx migraph_onnx migraph_cpu migraph_gpu) target_link_libraries(verify_onnx migraph_onnx migraph_cpu migraph_gpu)
......
#include <cstdio>
#include <string>
#include <fstream>
#include <numeric>
#include <stdexcept>
#include <migraph/onnx.hpp>
#include <migraph/cpu/cpu_target.hpp>
#include <migraph/gpu/target.hpp>
#include <migraph/gpu/hip.hpp>
#include <migraph/generate.hpp>
#include "softmax.hpp"
auto read_cifar10_images(const std::string& full_path)
{
std::ifstream file(full_path, std::ios::binary);
const size_t nimages = 10;
const size_t nbytes_per_image = 3072;
std::vector<uint8_t> raw_data(nimages * (nbytes_per_image + 1));
std::vector<uint8_t> labels(nimages);
std::vector<float> data(nimages * nbytes_per_image);
if(file.is_open())
{
file.read(reinterpret_cast<char*>(raw_data.data()),
(nbytes_per_image + 1) * nimages * sizeof(uint8_t));
uint8_t* pimage = raw_data.data();
for(size_t i = 0; i < nimages; i++, pimage += nbytes_per_image)
{
labels[i] = *pimage++;
for(size_t j = 0; j < nbytes_per_image; j++)
{
float v = *(pimage + j) / 255.0f;
data[i * nbytes_per_image + j] = v;
}
}
return std::make_pair(labels, data);
}
else
{
throw std::runtime_error("Cannot open file `" + full_path + "`!");
}
}
int main(int argc, char const* argv[])
{
if(argc < 4)
{
throw std::runtime_error("Usage: cifar10 [gpu | cpu] <onnx file> <cifar10 data file>");
}
std::string gpu_cpu = argv[1];
std::string file = argv[2];
std::string datafile = argv[3];
auto prog = migraph::parse_onnx(file);
std::cout << prog << std::endl;
auto imageset = read_cifar10_images(datafile);
if(gpu_cpu == "gpu")
{
// GPU target
prog.compile(migraph::gpu::target{});
migraph::program::parameter_map m;
auto s = migraph::shape{migraph::shape::float_type, {1, 3, 32, 32}};
for(auto&& x : prog.get_parameter_shapes())
{
m[x.first] = migraph::gpu::to_gpu(migraph::generate_argument(x.second));
}
auto labels = imageset.first;
auto input = imageset.second;
auto ptr = input.data();
for(int i = 0; i < 10; i++)
{
std::cout << "label: " << static_cast<uint32_t>(labels[i]) << " ----> ";
m["0"] = migraph::gpu::to_gpu(migraph::argument{s, &ptr[3072 * i]});
auto result = migraph::gpu::from_gpu(prog.eval(m));
std::vector<float> logits;
result.visit([&](auto output) { logits.assign(output.begin(), output.end()); });
std::vector<float> probs = softmax<float>(logits);
for(auto x : probs)
std::cout << x << " ";
std::cout << std::endl << std::endl;
}
}
else
{
// CPU target
prog.compile(migraph::cpu::cpu_target{});
auto s = migraph::shape{migraph::shape::float_type, {1, 3, 32, 32}};
auto labels = imageset.first;
auto input = imageset.second;
auto ptr = input.data();
for(int i = 0; i < 10; i++)
{
std::cout << "label: " << static_cast<uint32_t>(labels[i]) << " ----> ";
auto input3 = migraph::argument{s, &ptr[3072 * i]};
auto result = prog.eval({{"0", input3}});
std::vector<float> logits;
result.visit([&](auto output) { logits.assign(output.begin(), output.end()); });
std::vector<float> probs = softmax<float>(logits);
for(auto x : probs)
std::cout << x << " ";
std::cout << std::endl;
}
}
}
...@@ -6,9 +6,12 @@ ...@@ -6,9 +6,12 @@
#include <migraph/onnx.hpp> #include <migraph/onnx.hpp>
#include <migraph/cpu/cpu_target.hpp> #include <migraph/gpu/target.hpp>
#include <migraph/gpu/hip.hpp>
#include <migraph/generate.hpp> #include <migraph/generate.hpp>
#include "softmax.hpp"
auto reverse_int(unsigned int i) auto reverse_int(unsigned int i)
{ {
unsigned char c1, c2, c3, c4; unsigned char c1, c2, c3, c4;
...@@ -97,16 +100,6 @@ std::vector<int32_t> read_mnist_labels(const std::string& full_path, int& number ...@@ -97,16 +100,6 @@ std::vector<int32_t> read_mnist_labels(const std::string& full_path, int& number
} }
} }
std::vector<float> softmax(std::vector<float> p)
{
size_t n = p.size();
std::vector<float> result(n);
std::transform(p.begin(), p.end(), result.begin(), [](auto x) { return std::exp(x); });
float s = std::accumulate(result.begin(), result.end(), 0.0f, std::plus<float>());
std::transform(result.begin(), result.end(), result.begin(), [=](auto x) { return x / s; });
return result;
}
int main(int argc, char const* argv[]) int main(int argc, char const* argv[])
{ {
if(argc > 3) if(argc > 3)
...@@ -121,15 +114,19 @@ int main(int argc, char const* argv[]) ...@@ -121,15 +114,19 @@ int main(int argc, char const* argv[])
std::string file = argv[1]; std::string file = argv[1];
auto prog = migraph::parse_onnx(file); auto prog = migraph::parse_onnx(file);
prog.compile(migraph::cpu::cpu_target{}); std::cout << prog << std::endl << std::endl;
prog.compile(migraph::gpu::target{});
auto s = migraph::shape{migraph::shape::float_type, {1, 1, 28, 28}}; auto s = migraph::shape{migraph::shape::float_type, {1, 1, 28, 28}};
std::cout << s << std::endl; std::cout << s << std::endl;
auto ptr = input.data(); auto ptr = input.data();
migraph::program::parameter_map m;
m["output"] =
migraph::gpu::to_gpu(migraph::generate_argument(prog.get_parameter_shape("output")));
for(int i = 0; i < 20; i++) for(int i = 0; i < 20; i++)
{ {
std::cout << "label: " << labels[i] << " ----> "; std::cout << "label: " << labels[i] << " ----> ";
auto input3 = migraph::argument{s, &ptr[784 * i]}; m["0"] = migraph::gpu::to_gpu(migraph::argument{s, &ptr[784 * i]});
auto result = prog.eval({{"Input3", input3}}); auto result = migraph::gpu::from_gpu(prog.eval(m));
std::vector<float> logits; std::vector<float> logits;
result.visit([&](auto output) { logits.assign(output.begin(), output.end()); }); result.visit([&](auto output) { logits.assign(output.begin(), output.end()); });
std::vector<float> probs = softmax(logits); std::vector<float> probs = softmax(logits);
......
...@@ -234,7 +234,7 @@ struct onnx_parser ...@@ -234,7 +234,7 @@ struct onnx_parser
} }
if(contains(attributes, "momentum")) if(contains(attributes, "momentum"))
{ {
epsilon = parse_value(attributes.at("momentum")).at<float>(); momentum = parse_value(attributes.at("momentum")).at<float>();
} }
if(contains(attributes, "is_test")) if(contains(attributes, "is_test"))
{ {
......
#include <vector>
#include <algorithm>
#include <cmath>
template <typename T>
std::vector<T> softmax(const std::vector<T>& p)
{
size_t n = p.size();
std::vector<T> result(n);
std::transform(p.begin(), p.end(), result.begin(), [](auto x) { return std::exp(x); });
T s = std::accumulate(result.begin(), result.end(), 0.0f, std::plus<T>());
std::transform(result.begin(), result.end(), result.begin(), [=](auto x) { return x / s; });
return result;
}
...@@ -5,61 +5,110 @@ ...@@ -5,61 +5,110 @@
#include <migraph/gpu/target.hpp> #include <migraph/gpu/target.hpp>
#include <migraph/gpu/hip.hpp> #include <migraph/gpu/hip.hpp>
#include <migraph/generate.hpp> #include <migraph/generate.hpp>
#include <migraph/verify.hpp> #include <migraph/verify_args.hpp>
#include <migraph/instruction.hpp>
migraph::argument run_cpu(const std::string& file) template <class T>
auto get_hash(const T& x)
{ {
auto p = migraph::parse_onnx(file); return std::hash<T>{}(x);
}
template <class F>
migraph::argument run_cpu(F f)
{
auto p = f();
p.compile(migraph::cpu::cpu_target{}); p.compile(migraph::cpu::cpu_target{});
migraph::program::parameter_map m; migraph::program::parameter_map m;
for(auto&& x : p.get_parameter_shapes()) for(auto&& x : p.get_parameter_shapes())
{ {
m[x.first] = migraph::generate_argument(x.second); m[x.first] = migraph::generate_argument(x.second, get_hash(x.first));
} }
auto out = p.eval(m); auto out = p.eval(m);
std::cout << p << std::endl; std::cout << p << std::endl;
return out; return out;
} }
migraph::argument run_gpu(const std::string& file) template <class F>
migraph::argument run_gpu(F f)
{ {
auto p = migraph::parse_onnx(file); auto p = f();
p.compile(migraph::gpu::target{}); p.compile(migraph::gpu::target{});
migraph::program::parameter_map m; migraph::program::parameter_map m;
for(auto&& x : p.get_parameter_shapes()) for(auto&& x : p.get_parameter_shapes())
{ {
m[x.first] = migraph::gpu::to_gpu(migraph::generate_argument(x.second)); m[x.first] = migraph::gpu::to_gpu(migraph::generate_argument(x.second, get_hash(x.first)));
} }
auto out = migraph::gpu::from_gpu(p.eval(m)); auto out = migraph::gpu::from_gpu(p.eval(m));
std::cout << p << std::endl; std::cout << p << std::endl;
return migraph::gpu::from_gpu(out); return migraph::gpu::from_gpu(out);
} }
template <class F>
void verify_program(const std::string& name, F f, double tolerance = 100)
{
auto x = run_cpu(f);
auto y = run_gpu(f);
migraph::verify_args(name, x, y, tolerance);
}
void verify_instructions(const migraph::program& prog, double tolerance = 80)
{
for(auto&& ins : prog)
{
if(ins.op.name().front() == '@')
continue;
if(ins.op.name() == "broadcast")
continue;
if(ins.op.name() == "transpose")
continue;
if(ins.op.name() == "reshape")
continue;
auto create_program = [&] {
migraph::program p;
std::vector<migraph::instruction_ref> inputs;
for(auto&& arg : ins.arguments)
{
if(arg->op.name() == "@literal")
inputs.push_back(p.add_literal(arg->lit));
else
inputs.push_back(
p.add_parameter(std::to_string(inputs.size()), arg->get_shape()));
}
p.add_instruction(ins.op, inputs);
return p;
};
try
{
std::cout << "Verify: " << ins.op.name() << std::endl;
std::cout << create_program() << std::endl;
verify_program(ins.op.name(), create_program, tolerance);
}
catch(...)
{
std::cout << "Instruction " << ins.op.name() << " threw an exception." << std::endl;
throw;
}
}
}
int main(int argc, char const* argv[]) int main(int argc, char const* argv[])
{ {
if(argc > 1) std::vector<std::string> args(argv + 1, argv + argc);
if(not args.empty())
{ {
std::string file = argv[1]; std::string file = args.front();
auto p = migraph::parse_onnx(file); auto p = migraph::parse_onnx(file);
std::cout << p << std::endl; std::cout << p << std::endl;
auto x = run_cpu(file); if(std::any_of(args.begin(), args.end(), [](const auto& s) { return s == "-i"; }))
auto y = run_gpu(file); {
visit_all(x, y)([](auto cpu, auto gpu) { verify_instructions(p);
if(migraph::verify_range(cpu, gpu, 100)) }
{ else
std::cout << "Passed" << std::endl; {
} verify_program(file, [&] { return migraph::parse_onnx(file); });
else }
{
std::cout << "Not equal" << std::endl;
std::cout << "cpu:" << std::endl;
std::cout << cpu << std::endl;
std::cout << "gpu:" << std::endl;
std::cout << gpu << std::endl;
}
});
} }
} }
...@@ -179,6 +179,7 @@ instruction_ref program::add_outline(const shape& s) ...@@ -179,6 +179,7 @@ instruction_ref program::add_outline(const shape& s)
instruction_ref program::add_parameter(std::string name, shape s) instruction_ref program::add_parameter(std::string name, shape s)
{ {
assert(get_parameter_shape(name) == shape{});
impl->instructions.push_front({builtin::param{std::move(name)}, std::move(s), {}}); impl->instructions.push_front({builtin::param{std::move(name)}, std::move(s), {}});
return impl->instructions.begin(); return impl->instructions.begin();
} }
......
...@@ -11,6 +11,7 @@ if(NOT TARGET MIOpen) ...@@ -11,6 +11,7 @@ if(NOT TARGET MIOpen)
endif() endif()
add_library(migraph_device add_library(migraph_device
device/add.cpp
device/add_relu.cpp device/add_relu.cpp
device/contiguous.cpp device/contiguous.cpp
) )
......
#include <migraph/gpu/device/add.hpp>
#include <migraph/gpu/device/nary.hpp>
namespace migraph {
namespace gpu {
namespace device {
void add(const argument& result, const argument& arg1, const argument& arg2)
{
nary(result, arg1, arg2)([](auto x, auto y) { return x + y; });
}
} // namespace device
} // namespace gpu
} // namespace migraph
...@@ -5,10 +5,9 @@ namespace migraph { ...@@ -5,10 +5,9 @@ namespace migraph {
namespace gpu { namespace gpu {
namespace device { namespace device {
void add_relu(argument result, argument arg1, argument arg2) void add_relu(const argument& result, const argument& arg1, const argument& arg2)
{ {
nary_standard(std::move(result), std::move(arg1), std::move(arg2))( nary(result, arg1, arg2)([](auto x, auto y) { return std::max<decltype(x + y)>(0, x + y); });
[](auto x, auto y) { return max(0, x + y); });
} }
} // namespace device } // namespace device
......
...@@ -33,10 +33,10 @@ inline auto launch(std::size_t global, std::size_t local) ...@@ -33,10 +33,10 @@ inline auto launch(std::size_t global, std::size_t local)
}; };
} }
inline auto gs_launch(std::size_t n, std::size_t local = 512) inline auto gs_launch(std::size_t n, std::size_t local = 1024)
{ {
std::size_t groups = 1 + n / local; std::size_t groups = 1 + n / local;
std::size_t nglobal = std::min<std::size_t>(512, groups) * local; std::size_t nglobal = std::min<std::size_t>(256, groups) * local;
return [=](auto f) { return [=](auto f) {
launch(nglobal, local)([=](auto idx) { launch(nglobal, local)([=](auto idx) {
...@@ -48,6 +48,14 @@ inline auto gs_launch(std::size_t n, std::size_t local = 512) ...@@ -48,6 +48,14 @@ inline auto gs_launch(std::size_t n, std::size_t local = 512)
}; };
} }
// Workaround hcc's broken tile_static macro
#ifdef tile_static
#undef tile_static
#define MIGRAPH_DEVICE_SHARED __attribute__((tile_static))
#else
#define MIGRAPH_DEVICE_SHARED __shared__
#endif
} // namespace device } // namespace device
} // namespace gpu } // namespace gpu
} // namespace migraph } // namespace migraph
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment