"include/vscode:/vscode.git/clone" did not exist on "f3e61c0ab68790ea5da4612b2cb94bbdcfcefc0e"
Commit 272bce63 authored by Khalique's avatar Khalique
Browse files

added more onnx tests

parent 86663aa5
constant-scalar-example:R constant-scalar-example:R
00"Constant*! 00"Constant*!
value**B const_tensor  test-constantb value**B const_tensor  test-constantb
0 0
 
B B
\ No newline at end of file
......
...@@ -271,7 +271,33 @@ def constant_test(): ...@@ -271,7 +271,33 @@ def constant_test():
onnx.save(model_def, 'constant_test.onnx') onnx.save(model_def, 'constant_test.onnx')
def constant_fill_test(): def constant_fill_test():
value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node(
'ConstantFill',
inputs=[],
outputs=['value'],
dtype = 1,
value = 1.0,
shape = [2, 3],
input_as_shape = 0,
)
graph_def = helper.make_graph(
[node],
'constant_fill',
[],
[value],
)
model_def = helper.make_model(graph_def, producer_name='constant-fill-example')
onnx.save(model_def, 'constant_fill_test.onnx')
def constant_fill_input_as_shape_test():
np_shape = np.array([2, 3]) np_shape = np.array([2, 3])
shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])
ts_shape = helper.make_tensor( ts_shape = helper.make_tensor(
name = 'shape_tensor', name = 'shape_tensor',
data_type = TensorProto.INT32, data_type = TensorProto.INT32,
...@@ -285,8 +311,6 @@ def constant_fill_test(): ...@@ -285,8 +311,6 @@ def constant_fill_test():
outputs=['shape'], outputs=['shape'],
value=ts_shape, value=ts_shape,
) )
shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node( node = onnx.helper.make_node(
'ConstantFill', 'ConstantFill',
...@@ -305,27 +329,7 @@ def constant_fill_test(): ...@@ -305,27 +329,7 @@ def constant_fill_test():
) )
model_def = helper.make_model(graph_def, producer_name='constant-fill-example') model_def = helper.make_model(graph_def, producer_name='constant-fill-example')
onnx.save(model_def, 'const_fill1_test.onnx') onnx.save(model_def, 'constant_fill_input_as_shape_test.onnx')
node = onnx.helper.make_node(
'ConstantFill',
inputs=[],
outputs=['value'],
dtype = 1,
value = 1.0,
shape = [2, 3],
input_as_shape = 0,
)
graph_def = helper.make_graph(
[node],
'constant_fill',
[],
[value],
)
model_def = helper.make_model(graph_def, producer_name='constant-fill-example')
onnx.save(model_def, 'const_fill2_test.onnx')
def constant_scalar_test(): def constant_scalar_test():
x = np.array([1]) x = np.array([1])
...@@ -1295,15 +1299,59 @@ def reducemean_keepdims_test(): ...@@ -1295,15 +1299,59 @@ def reducemean_keepdims_test():
) )
model_def = helper.make_model(graph_def, producer_name='reducemean-example') model_def = helper.make_model(graph_def, producer_name='reducemean-example')
print('The mode is:{}'.format(model_def))
onnx.checker.check_model(model_def)
onnx.save(model_def, 'reducemean_keepdims_test.onnx') onnx.save(model_def, 'reducemean_keepdims_test.onnx')
def reducesum_keepdims_test(): def reducesum_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6]) x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1]) y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
axes=[2]
node = onnx.helper.make_node(
'ReduceSum',
inputs=['x'],
outputs=['y'],
axes=axes,
keepdims = 0
)
graph_def = helper.make_graph(
[node],
'test_reducesum',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='reducesum-example')
onnx.save(model_def, 'reducesum_test.onnx')
def reducesum_multiaxis_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
axes=[2, 3] axes=[2, 3]
node = onnx.helper.make_node(
'ReduceSum',
inputs=['x'],
outputs=['y'],
axes=axes,
keepdims = 1
)
graph_def = helper.make_graph(
[node],
'test_reducesum',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='reducesum-example')
onnx.save(model_def, 'reducesum_multiaxis_test.onnx')
def reducesum_keepdims_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
axes=[2, 3]
node = onnx.helper.make_node( node = onnx.helper.make_node(
'ReduceSum', 'ReduceSum',
inputs=['x'], inputs=['x'],
...@@ -1320,8 +1368,6 @@ def reducesum_keepdims_test(): ...@@ -1320,8 +1368,6 @@ def reducesum_keepdims_test():
) )
model_def = helper.make_model(graph_def, producer_name='reducesum-example') model_def = helper.make_model(graph_def, producer_name='reducesum-example')
print('The mode is:{}'.format(model_def))
onnx.checker.check_model(model_def)
onnx.save(model_def, 'reducesum_keepdims_test.onnx') onnx.save(model_def, 'reducesum_keepdims_test.onnx')
def reshape_test(): def reshape_test():
...@@ -1355,6 +1401,158 @@ def reshape_test(): ...@@ -1355,6 +1401,158 @@ def reshape_test():
model_def = helper.make_model(graph_def, producer_name=('reshape-example')) model_def = helper.make_model(graph_def, producer_name=('reshape-example'))
onnx.save(model_def, 'reshape_test.onnx') onnx.save(model_def, 'reshape_test.onnx')
def reshape_non_standard_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT, [2, 4, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])
trans = helper.make_node(
'Transpose',
inputs=['x'],
outputs=['trans_x'],
perm=[0, 2, 1],
)
res = onnx.helper.make_node(
'Reshape',
inputs=['trans_x'],
outputs=['y'],
shape=[4, 3, 2]
)
graph_def = helper.make_graph(
[trans, res],
'reshape-ns',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='reshape')
onnx.save(model_def, 'reshape_non_standard_test.onnx')
def shape_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])
node = onnx.helper.make_node(
'Shape',
inputs=['x'],
outputs=['y'],
)
graph_def = helper.make_graph(
[node],
'test_shape',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='shape-example')
onnx.save(model_def, 'shape_test.onnx')
def shape_gather_test():
values = np.array([1])
value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])
value_tensor = helper.make_tensor(
name = 'const_tensor',
data_type = TensorProto.INT32,
dims = values.shape,
vals = values.flatten().astype(int))
node_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['value'],
value=value_tensor,
)
node_shape = onnx.helper.make_node(
'Shape',
inputs=['x'],
outputs=['y'],
)
node_gather = helper.make_node(
'Gather',
inputs=['y', 'value'],
outputs=['z'],
axis=0,
)
graph_def = helper.make_graph(
[node_const, node_shape, node_gather],
'shape_gather',
[x],
[z],
)
model_def = helper.make_model(graph_def, producer_name='shape-gather-example')
onnx.save(model_def, 'shape_gather_test.onnx')
def sign_test():
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])
node = onnx.helper.make_node(
'Sign',
inputs=['x'],
outputs=['y'],
)
graph_def = helper.make_graph(
[node],
'test_sign',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='sign-example')
onnx.save(model_def, 'sign_test.onnx')
def sin_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])
node = onnx.helper.make_node(
'Sin',
inputs=['x'],
outputs=['y'],
)
graph_def = helper.make_graph(
[node],
'test_sin',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='sin-example')
onnx.save(model_def, 'sin_test.onnx')
def sinh_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])
node = onnx.helper.make_node(
'Sinh',
inputs=['x'],
outputs=['y'],
)
graph_def = helper.make_graph(
[node],
'test_sinh',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='sinh-example')
onnx.save(model_def, 'sinh_test.onnx')
def slice_test(): def slice_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2]) x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2]) y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])
...@@ -1398,6 +1596,26 @@ def softmax_test(): ...@@ -1398,6 +1596,26 @@ def softmax_test():
model_def = helper.make_model(graph_def, producer_name=('softmax-example')) model_def = helper.make_model(graph_def, producer_name=('softmax-example'))
onnx.save(model_def, 'softmax_test.onnx') onnx.save(model_def, 'softmax_test.onnx')
def sqrt_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])
node = onnx.helper.make_node(
'Sqrt',
inputs=['x'],
outputs=['y'],
)
graph_def = helper.make_graph(
[node],
'test_sqrt',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='sqrt-example')
onnx.save(model_def, 'sqrt_test.onnx')
def squeeze_unsqueeze_test(): def squeeze_unsqueeze_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 1, 1, 2, 1]) x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 1, 1, 2, 1])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2]) y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
...@@ -1427,6 +1645,66 @@ def squeeze_unsqueeze_test(): ...@@ -1427,6 +1645,66 @@ def squeeze_unsqueeze_test():
model_def = helper.make_model(graph_def, producer_name=('squeeze-unsqueeze-example')) model_def = helper.make_model(graph_def, producer_name=('squeeze-unsqueeze-example'))
onnx.save(model_def, 'squeeze_unsqueeze_test.onnx') onnx.save(model_def, 'squeeze_unsqueeze_test.onnx')
def sub_bcast_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [2, 3, 4, 5])
node = onnx.helper.make_node(
'Sub',
inputs=['0', '1'],
outputs=['out'],
broadcast = 1,
axis = 1,
)
graph_def = helper.make_graph(
[node],
'subtraction2',
[arg0, arg1],
[arg_out],
)
model_def = helper.make_model(graph_def, producer_name='subtraction2')
onnx.save(model_def, 'sub_bcast_test.onnx')
def sub_scalar_test():
values = np.array([1])
arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [2, 3, 4, 5])
values_tensor = helper.make_tensor(
name = 'const',
data_type = TensorProto.FLOAT,
dims = values.shape,
vals = values.flatten().astype(float)
)
arg_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['arg_const'],
value=values_tensor,
)
node = onnx.helper.make_node(
'Sub',
inputs=['0', 'arg_const'],
outputs=['out'],
)
graph_def = helper.make_graph(
[arg_const, node],
'subtraction1',
[arg_node],
[arg_out],
)
model_def = helper.make_model(graph_def, producer_name='subtraction1')
onnx.save(model_def, 'sub_scalar_test.onnx')
def sum_test(): def sum_test():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3]) a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3]) b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
...@@ -1472,6 +1750,46 @@ def sum_test(): ...@@ -1472,6 +1750,46 @@ def sum_test():
model_def = helper.make_model(graph_def, producer_name='sum-example') model_def = helper.make_model(graph_def, producer_name='sum-example')
onnx.save(model_def, 'sum_test.onnx') onnx.save(model_def, 'sum_test.onnx')
def tan_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])
node = onnx.helper.make_node(
'Tan',
inputs=['x'],
outputs=['y'],
)
graph_def = helper.make_graph(
[node],
'test_tan',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='tan-example')
onnx.save(model_def, 'tan_test.onnx')
def tanh_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])
node = onnx.helper.make_node(
'Tanh',
inputs=['x'],
outputs=['y'],
)
graph_def = helper.make_graph(
[node],
'test_tanh',
[x],
[y],
)
model_def = helper.make_model(graph_def, producer_name='tanh-example')
onnx.save(model_def, 'tahn_test.onnx')
def transpose_test(): def transpose_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3]) x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2]) y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
......
implicit_bcast-example:u

0
12"Addtest-multi_bcastZ
0




Z
1



b
2




B
add2:u pow2:q
 
0 0
1out"Add subtraction2Z 1out"Powpow_testZ
0 0
 
 
......
leaky_relu-example:R leaky_relu-example:R
" "
01" LeakyRelu* 01" LeakyRelu*
alpha alpha
...@@ -11,4 +11,4 @@ test-modelZ ...@@ -11,4 +11,4 @@ test-modelZ
1 1
 
B B
\ No newline at end of file
 cosh-example:;
xy"Cosh test_coshZ
x

b
y

B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment