layernorm.cpp 14.2 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
#include <migraphx/gpu/device/layernorm.hpp>
#include <migraphx/gpu/device/reduce.hpp>
#include <migraphx/gpu/device/pow.hpp>
#include <migraphx/gpu/device/fast_div.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
5
6
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
kahmed10's avatar
kahmed10 committed
7
8
9
10
11
12

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

kahmed10's avatar
kahmed10 committed
13
14
15
16
17
18
19
20
#ifndef MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
#if __AMDGCN_WAVEFRONT_SIZE == 32
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 1
#else
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 0
#endif
#endif

21
22
23
24
25
26
27
28
29
30
31
32
33
34
template <class T>
struct vector_type
{
};

template <class T, index_int N>
struct vector_type<vec<T, N>>
{
    using type = T;
};

template <class T>
using vector_type_t = typename vector_type<T>::type;

Paul Fultz II's avatar
Paul Fultz II committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
template <class T>
struct vector_size : std::integral_constant<index_int, 1>
{
};

template <class T, index_int N>
struct vector_size<vec<T, N>> : std::integral_constant<index_int, N>
{
};

template <class T, class F>
__device__ auto vec_transform(T x, F f)
{
    return f(x);
}

template <class T, index_int N, class F>
__device__ auto vec_transform(vec<T, N> x, F f)
{
    vec<T, N> y = x;
    // cppcheck-suppress useStlAlgorithm
    for(index_int k = 0; k < N; k++)
        y[k] = f(x[k]);
    return y;
}

template <class T, class U, class Op>
__device__ auto vec_reduce(T x, U, Op)
{
    return x;
}

template <class T, index_int N, class U, class Op>
__device__ auto vec_reduce(vec<T, N> x, U init, Op op)
{
    T r = init;
    for(index_int k = 0; k < N; k++)
        r = op(r, x[k]);
    return r;
}

template <index_int N, class Op, class T, class F>
__device__ auto auto_block_reduce(index idx, Op op, T init, index_int n, F f)
{
    auto r = block_reduce<N>(idx, op, init, n, f);
    return vec_reduce(r, 0, op);
}

template <index_int MaxBlockSize, class Input, class Output>
Shucai Xiao's avatar
Shucai Xiao committed
84
__device__ void layernorm(index idx, index_int relements, Input input, Output output)
Paul Fultz II's avatar
Paul Fultz II committed
85
86
87
{
    using value_type       = decltype(input(idx.local));
    const auto relements_v = relements / vector_size<value_type>{};
88
    const auto out_idx     = blockIdx.x;
Paul Fultz II's avatar
Paul Fultz II committed
89
90
91
92
93
    const auto base_idx    = out_idx * relements_v;
    const auto input_idx   = base_idx + idx.local;
    const bool in_range    = idx.local < relements_v;

    auto mean = [&](auto z) {
Shucai Xiao's avatar
Shucai Xiao committed
94
95
96
        auto m = auto_block_reduce<MaxBlockSize>(idx, sum{}, value_type(0), relements_v, [=](auto) {
            return z / value_type(relements);
        });
kahmed10's avatar
kahmed10 committed
97
98
99
100
#if MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
        __builtin_amdgcn_s_barrier();
#endif
        return m;
Paul Fultz II's avatar
Paul Fultz II committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    };

    // m = x - mean(x)
    value_type x = in_range ? input(input_idx) : 0;
    value_type m = x - mean(x);

    // mean(m ^ 2) + 1e-12
    value_type r = mean(m * m) + value_type(1e-12);

    // m * rsqrt(mean(m ^ 2) + 1e-12)
    if(in_range)
        output(input_idx, m * vec_transform(r, &rsqrt));
}

kahmed10's avatar
kahmed10 committed
115
116
// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
117

Paul Fultz II's avatar
Paul Fultz II committed
118
template <index_int N, class Input, class Output, class... Arguments>
119
120
void layernorm_vec_impl(hipStream_t stream,
                        index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
121
122
123
124
125
                        index_int relements,
                        Input in,
                        Output out,
                        const argument& result,
                        const Arguments&... args)
kahmed10's avatar
kahmed10 committed
126
{
Paul Fultz II's avatar
Paul Fultz II committed
127
    hip_vec_visit_all<N>(result, args...)([&](auto output, auto... inputs) {
128
129
130
131
132
        const auto relements_v           = relements / N;
        const std::size_t max_block_size = 256;
        const std::size_t block_size     = compute_block_size(relements_v, max_block_size);
        assert(relements_v <= block_size);

133
        gs_launch(stream, nelements * block_size, block_size)([=](auto, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
134
135
136
137
138
139
140
            layernorm<max_block_size>(
                idx,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
141
142
143
144
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
145
template <class Input, class Output, class... Arguments>
146
147
void layernorm_impl(hipStream_t stream,
                    index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
148
149
150
151
152
                    index_int relements,
                    Input in,
                    Output out,
                    const argument& result,
                    const Arguments&... args)
153
{
Paul Fultz II's avatar
Paul Fultz II committed
154
    hip_visit_all(result, args...)([&](auto output, auto... inputs) {
Shucai Xiao's avatar
Shucai Xiao committed
155
        const std::size_t max_block_size = 256;
kahmed10's avatar
kahmed10 committed
156
        const std::size_t block_size     = compute_block_size(relements, max_block_size);
157
        assert(relements <= block_size);
kahmed10's avatar
kahmed10 committed
158

159
        gs_launch(stream, nelements * block_size, block_size)([=](auto, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
160
161
162
163
164
165
166
            layernorm<max_block_size>(
                idx,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
kahmed10's avatar
kahmed10 committed
167
168
169
170
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
171
172
173
174
175
176
177
template <class... Arguments>
auto layernorm_fusion(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const Arguments&... args)
{
    return [=](auto input, auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
178
179
        auto relements = arg1.get_shape().lens().back();
        auto nelements = result.get_shape().elements() / relements;
Paul Fultz II's avatar
Paul Fultz II committed
180
181
182
183
184
185
186
187
188
189
        if((relements % 4) == 0)
            layernorm_vec_impl<4>(
                stream, nelements, relements, input, output, result, arg1, args...);
        else if(relements < 256)
            layernorm_impl(stream, nelements, relements, input, output, result, arg1, args...);
        else
            MIGRAPHX_THROW("No kernel for layernorm");
    };
}

Shucai Xiao's avatar
Shucai Xiao committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
struct half2_sum
{
    MIGRAPHX_DEVICE_CONSTEXPR auto operator()(__half2 x, __half2 y) const { return __hadd2(x, y); }
};

// in_data is in shared memory
template <class Op>
__device__ __half2 block_reduce_half2(
    __half2* buffer, index_int batch_item_num, index_int tid, index_int block_size, Op op)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = op(buffer[tid], buffer[tid + s]);
        }
        __syncthreads();
    }

    auto lows2  = __low2half2(buffer[0]);
    auto highs2 = __high2half2(buffer[0]);

    return op(lows2, highs2);
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
Shucai Xiao's avatar
Shucai Xiao committed
218
219
220
__device__ void layernorm_kernel_half2(__half2* in_data, __half2* in_data_reduce, 
                                       __half2* out, index_int batch_item_num, index_int block_size,
                                       float rbatch_num)
Shucai Xiao's avatar
Shucai Xiao committed
221
{
Shucai Xiao's avatar
Shucai Xiao committed
222
    auto rnum       = __float2half2_rn(rbatch_num);
Shucai Xiao's avatar
Shucai Xiao committed
223
224
225
    extern MIGRAPHX_DEVICE_SHARED __half2 buffer2[];
    auto m =
        block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
Shucai Xiao's avatar
Shucai Xiao committed
226
227
    m = __hmul2(m, rnum);

Shucai Xiao's avatar
Shucai Xiao committed
228
229
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
230
        in_data[i] = __hsub2(in_data[i], m);
Shucai Xiao's avatar
Shucai Xiao committed
231
        in_data_reduce[i] = __hmul2(in_data[i], in_data[i]);
Shucai Xiao's avatar
Shucai Xiao committed
232
233
234
    }

    m = block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
Shucai Xiao's avatar
Shucai Xiao committed
235
    m = __hmul2(m, rnum);
Shucai Xiao's avatar
Shucai Xiao committed
236
237
238
239
240

    auto eps = __float2half2_rn(1.0e-12f);
    auto r   = __hadd2(m, eps);
    r        = h2rsqrt(r);

Shucai Xiao's avatar
Shucai Xiao committed
241
    int start = blockIdx.x * batch_item_num;
Shucai Xiao's avatar
Shucai Xiao committed
242
243
244
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
Shucai Xiao's avatar
Shucai Xiao committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        out[idx] = __hmul2(in_data[i], r);
    }
}

__global__ void triadd_layernorm_half2(
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
    __half2* input1 = reinterpret_cast<__half2*>(in1);
    __half2* input2 = reinterpret_cast<__half2*>(in2);
    __half2* input3 = reinterpret_cast<__half2*>(in3);
    __half2* output = reinterpret_cast<__half2*>(data_out);
    float rnum = 1.0f / batch_item_num;
    batch_item_num /= 2;
    extern MIGRAPHX_DEVICE_SHARED __half2 buffer2[];
    __half2* in_data_reduce = buffer2;
    __half2* in_data        = buffer2 + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = __hadd2(__hadd2(input1[idx], input2[idx]), input3[idx]);
        in_data_reduce[i] = in_data[i];
Shucai Xiao's avatar
Shucai Xiao committed
268
    }
Shucai Xiao's avatar
Shucai Xiao committed
269
270

    layernorm_kernel_half2(in_data, in_data_reduce, output, batch_item_num, block_size, rnum);
Shucai Xiao's avatar
Shucai Xiao committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
}

template <class T>
__device__ T
block_reduce_half(T* buffer, index_int batch_item_num, index_int tid, index_int block_size)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = __float2half(__half2float(buffer[tid]) + __half2float(buffer[tid + s]));
        }
        __syncthreads();
    }

    return buffer[0];
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
Shucai Xiao's avatar
Shucai Xiao committed
292
293
__device__ void layernorm_kernel_half(__half* in_data, __half* in_data_reduce, __half* out, 
                                      index_int batch_item_num, index_int block_size, float rnum)
Shucai Xiao's avatar
Shucai Xiao committed
294
295
{
    auto m = block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size);
Shucai Xiao's avatar
Shucai Xiao committed
296
297
    m *= rnum;

Shucai Xiao's avatar
Shucai Xiao committed
298
299
300
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        in_data[i] = __float2half(__half2float(in_data[i]) - __half2float(m));
Shucai Xiao's avatar
Shucai Xiao committed
301
        in_data_reduce[i] = __float2half(__half2float(in_data[i]) * __half2float(in_data[i]));
Shucai Xiao's avatar
Shucai Xiao committed
302
303
    }

Shucai Xiao's avatar
Shucai Xiao committed
304
305
306
307
    m = block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size);
    m *= rnum;
    m += 1.0e-12f;

Shucai Xiao's avatar
Shucai Xiao committed
308
309
    auto r = __float2half(rsqrt(__half2float(m)));

Shucai Xiao's avatar
Shucai Xiao committed
310
    int start = blockIdx.x * batch_item_num;
Shucai Xiao's avatar
Shucai Xiao committed
311
312
313
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
Shucai Xiao's avatar
Shucai Xiao committed
314
        out[idx] = __float2half(__half2float(in_data[i]) * __half2float(r));
Shucai Xiao's avatar
Shucai Xiao committed
315
316
317
318
319
    }
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
Shucai Xiao's avatar
Shucai Xiao committed
320
__global__ void triadd_layernorm_half(
Shucai Xiao's avatar
Shucai Xiao committed
321
322
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
Shucai Xiao's avatar
Shucai Xiao committed
323
324
325
326
327
328
329
330
    __half* input1 = reinterpret_cast<__half*>(in1);
    __half* input2 = reinterpret_cast<__half*>(in2);
    __half* input3 = reinterpret_cast<__half*>(in3);
    __half* output = reinterpret_cast<__half*>(data_out);
    float rnum = 1.0f / batch_item_num;
    extern MIGRAPHX_DEVICE_SHARED __half bufferh[];
    __half* in_data_reduce = bufferh;
    __half* in_data        = bufferh + batch_item_num;
Shucai Xiao's avatar
Shucai Xiao committed
331
332
333
334
335

    int start = blockIdx.x * batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
Shucai Xiao's avatar
Shucai Xiao committed
336
337
        in_data[i]        = __float2half(__half2float(input1[idx]) + __half2float(input2[idx]) +
                                  __half2float(input3[idx]));
Shucai Xiao's avatar
Shucai Xiao committed
338
339
    }

Shucai Xiao's avatar
Shucai Xiao committed
340
    layernorm_kernel_half(in_data, in_data_reduce, output, batch_item_num, block_size, rnum);
Shucai Xiao's avatar
Shucai Xiao committed
341
342
}

Paul Fultz II's avatar
Paul Fultz II committed
343
344
345
346
347
348
void triadd_layernorm(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const argument& arg2,
                      const argument& arg3)
{
Shucai Xiao's avatar
Shucai Xiao committed
349
350
351
    auto in_s           = arg1.get_shape();
    auto type           = in_s.type();
    auto batch_item_num = in_s.lens().back();
352
    if(type == shape::half_type and (batch_item_num % 2) == 0)
Shucai Xiao's avatar
Shucai Xiao committed
353
    {
354
355
356
357
        auto half2_block_size = compute_block_size(batch_item_num, 1024);
        int block_num         = in_s.elements() / batch_item_num;
        int shared_size       = batch_item_num * 2 * in_s.type_size();
        half2_block_size      = half2_block_size / 4;
Shucai Xiao's avatar
Shucai Xiao committed
358
        triadd_layernorm_half2<<<block_num, half2_block_size, shared_size, stream>>>(
Shucai Xiao's avatar
Shucai Xiao committed
359
            arg1.data(), arg2.data(), arg3.data(), result.data(), batch_item_num, half2_block_size);
Shucai Xiao's avatar
Shucai Xiao committed
360
    }
Shucai Xiao's avatar
Shucai Xiao committed
361
362
363
364
365
366
    else
    {
        layernorm_fusion(stream, result, arg1, arg2, arg3)(
            [](auto x, auto y, auto z) { return x + y + z; },
            [](auto x, auto& y, auto...) { y = x; });
    }
Paul Fultz II's avatar
Paul Fultz II committed
367
368
}

Shucai Xiao's avatar
Shucai Xiao committed
369
__global__ void
Shucai Xiao's avatar
Shucai Xiao committed
370
layernorm_half2(void* in1, void* data_out, index_int batch_item_num, index_int block_size)
371
372
373
{
    __half2* input1 = reinterpret_cast<__half2*>(in1);
    __half2* output = reinterpret_cast<__half2*>(data_out);
Shucai Xiao's avatar
Shucai Xiao committed
374
    float rnum = 1.0f / batch_item_num;
375
376
377
378
379
380
381
382
383
384
385
386
387
    batch_item_num /= 2;
    extern MIGRAPHX_DEVICE_SHARED __half2 buffer2[];
    __half2* in_data_reduce = buffer2;
    __half2* in_data        = buffer2 + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = input1[idx];
        in_data_reduce[i] = in_data[i];
    }

Shucai Xiao's avatar
Shucai Xiao committed
388
389
    layernorm_kernel_half2(in_data, in_data_reduce, output, batch_item_num, block_size, rnum);
}
390

Shucai Xiao's avatar
Shucai Xiao committed
391
392
393
394
395
396
397
398
399
__global__ void
layernorm_half(void* in1, void* data_out, index_int batch_item_num, index_int block_size)
{
    __half* input1 = reinterpret_cast<__half*>(in1);
    __half* output = reinterpret_cast<__half*>(data_out);
    float rnum = 1.0f / batch_item_num;
    extern MIGRAPHX_DEVICE_SHARED __half buffer3[];
    __half* in_data_reduce = buffer3;
    __half* in_data        = buffer3 + batch_item_num;
400

Shucai Xiao's avatar
Shucai Xiao committed
401
    int start = blockIdx.x * batch_item_num;
402
403
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
404
405
406
        int idx           = i + start;
        in_data[i]        = input1[idx];
        in_data_reduce[i] = in_data[i];
407
    }
Shucai Xiao's avatar
Shucai Xiao committed
408
409

    layernorm_kernel_half(in_data, in_data_reduce, output, batch_item_num, block_size, rnum);
410
411
}

412
413
void layernorm(hipStream_t stream, const argument& result, const argument& arg1)
{
414
415
416
417
418
419
420
421
422
    auto in_s           = arg1.get_shape();
    auto type           = in_s.type();
    auto batch_item_num = in_s.lens().back();
    if(type == shape::half_type and (batch_item_num % 2) == 0)
    {
        auto half2_block_size = compute_block_size(batch_item_num, 1024);
        int block_num         = in_s.elements() / batch_item_num;
        int shared_size       = batch_item_num * 2 * in_s.type_size();
        half2_block_size      = half2_block_size / 4;
Shucai Xiao's avatar
Shucai Xiao committed
423
        layernorm_half2<<<block_num, half2_block_size, shared_size, stream>>>(
424
425
426
427
428
            arg1.data(), result.data(), batch_item_num, half2_block_size);
    }
    else
    {
        layernorm_fusion(stream, result, arg1)([](auto x) { return x; },
Shucai Xiao's avatar
Shucai Xiao committed
429
                                               [](auto x, auto& y, auto) { y = x; });
430
    }
431
432
}

kahmed10's avatar
kahmed10 committed
433
434
435
436
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx