layernorm.cpp 15.6 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
#include <migraphx/gpu/device/layernorm.hpp>
#include <migraphx/gpu/device/reduce.hpp>
#include <migraphx/gpu/device/pow.hpp>
#include <migraphx/gpu/device/fast_div.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
5
6
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
kahmed10's avatar
kahmed10 committed
7
8
9
10
11
12

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

kahmed10's avatar
kahmed10 committed
13
14
15
16
17
18
19
20
#ifndef MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
#if __AMDGCN_WAVEFRONT_SIZE == 32
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 1
#else
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 0
#endif
#endif

21
22
23
24
25
26
27
28
29
30
31
32
33
34
template <class T>
struct vector_type
{
};

template <class T, index_int N>
struct vector_type<vec<T, N>>
{
    using type = T;
};

template <class T>
using vector_type_t = typename vector_type<T>::type;

Paul Fultz II's avatar
Paul Fultz II committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
template <class T>
struct vector_size : std::integral_constant<index_int, 1>
{
};

template <class T, index_int N>
struct vector_size<vec<T, N>> : std::integral_constant<index_int, N>
{
};

template <class T, class F>
__device__ auto vec_transform(T x, F f)
{
    return f(x);
}

template <class T, index_int N, class F>
__device__ auto vec_transform(vec<T, N> x, F f)
{
    vec<T, N> y = x;
    // cppcheck-suppress useStlAlgorithm
    for(index_int k = 0; k < N; k++)
        y[k] = f(x[k]);
    return y;
}

template <class T, class U, class Op>
__device__ auto vec_reduce(T x, U, Op)
{
    return x;
}

template <class T, index_int N, class U, class Op>
__device__ auto vec_reduce(vec<T, N> x, U init, Op op)
{
    T r = init;
    for(index_int k = 0; k < N; k++)
        r = op(r, x[k]);
    return r;
}

template <index_int N, class Op, class T, class F>
__device__ auto auto_block_reduce(index idx, Op op, T init, index_int n, F f)
{
    auto r = block_reduce<N>(idx, op, init, n, f);
    return vec_reduce(r, 0, op);
}

template <index_int MaxBlockSize, class Input, class Output>
84
__device__ void layernorm(index idx,
Paul Fultz II's avatar
Paul Fultz II committed
85
86
87
88
89
90
                          index_int relements,
                          Input input,
                          Output output)
{
    using value_type       = decltype(input(idx.local));
    const auto relements_v = relements / vector_size<value_type>{};
91
    const auto out_idx     = blockIdx.x;
Paul Fultz II's avatar
Paul Fultz II committed
92
93
94
95
96
    const auto base_idx    = out_idx * relements_v;
    const auto input_idx   = base_idx + idx.local;
    const bool in_range    = idx.local < relements_v;

    auto mean = [&](auto z) {
Shucai Xiao's avatar
Shucai Xiao committed
97
98
99
        auto m = auto_block_reduce<MaxBlockSize>(idx, sum{}, value_type(0), relements_v, [=](auto) {
            return z / value_type(relements);
        });
kahmed10's avatar
kahmed10 committed
100
101
102
103
#if MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
        __builtin_amdgcn_s_barrier();
#endif
        return m;
Paul Fultz II's avatar
Paul Fultz II committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    };

    // m = x - mean(x)
    value_type x = in_range ? input(input_idx) : 0;
    value_type m = x - mean(x);

    // mean(m ^ 2) + 1e-12
    value_type r = mean(m * m) + value_type(1e-12);

    // m * rsqrt(mean(m ^ 2) + 1e-12)
    if(in_range)
        output(input_idx, m * vec_transform(r, &rsqrt));
}

kahmed10's avatar
kahmed10 committed
118
119
// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
120

Paul Fultz II's avatar
Paul Fultz II committed
121
template <index_int N, class Input, class Output, class... Arguments>
122
123
void layernorm_vec_impl(hipStream_t stream,
                        index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
124
125
126
127
128
                        index_int relements,
                        Input in,
                        Output out,
                        const argument& result,
                        const Arguments&... args)
kahmed10's avatar
kahmed10 committed
129
{
Paul Fultz II's avatar
Paul Fultz II committed
130
    hip_vec_visit_all<N>(result, args...)([&](auto output, auto... inputs) {
131
132
133
134
135
        const auto relements_v           = relements / N;
        const std::size_t max_block_size = 256;
        const std::size_t block_size     = compute_block_size(relements_v, max_block_size);
        assert(relements_v <= block_size);

136
        gs_launch(stream, nelements * block_size, block_size)([=](auto, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
137
138
139
140
141
142
143
            layernorm<max_block_size>(
                idx,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
144
145
146
147
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
148
template <class Input, class Output, class... Arguments>
149
150
void layernorm_impl(hipStream_t stream,
                    index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
151
152
153
154
155
                    index_int relements,
                    Input in,
                    Output out,
                    const argument& result,
                    const Arguments&... args)
156
{
Paul Fultz II's avatar
Paul Fultz II committed
157
    hip_visit_all(result, args...)([&](auto output, auto... inputs) {
Shucai Xiao's avatar
Shucai Xiao committed
158
        const std::size_t max_block_size = 256;
kahmed10's avatar
kahmed10 committed
159
        const std::size_t block_size     = compute_block_size(relements, max_block_size);
160
        assert(relements <= block_size);
kahmed10's avatar
kahmed10 committed
161

162
        gs_launch(stream, nelements * block_size, block_size)([=](auto, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
163
164
165
166
167
168
169
            layernorm<max_block_size>(
                idx,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
kahmed10's avatar
kahmed10 committed
170
171
172
173
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
174
175
176
177
178
179
180
template <class... Arguments>
auto layernorm_fusion(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const Arguments&... args)
{
    return [=](auto input, auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
181
182
        auto relements = arg1.get_shape().lens().back();
        auto nelements = result.get_shape().elements() / relements;
Paul Fultz II's avatar
Paul Fultz II committed
183
184
185
186
187
188
189
190
191
192
        if((relements % 4) == 0)
            layernorm_vec_impl<4>(
                stream, nelements, relements, input, output, result, arg1, args...);
        else if(relements < 256)
            layernorm_impl(stream, nelements, relements, input, output, result, arg1, args...);
        else
            MIGRAPHX_THROW("No kernel for layernorm");
    };
}

Shucai Xiao's avatar
Shucai Xiao committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
struct half2_sum
{
    MIGRAPHX_DEVICE_CONSTEXPR auto operator()(__half2 x, __half2 y) const { return __hadd2(x, y); }
};

// in_data is in shared memory
template <class Op>
__device__ __half2 block_reduce_half2(
    __half2* buffer, index_int batch_item_num, index_int tid, index_int block_size, Op op)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = op(buffer[tid], buffer[tid + s]);
        }
        __syncthreads();
    }

    auto lows2  = __low2half2(buffer[0]);
    auto highs2 = __high2half2(buffer[0]);

    return op(lows2, highs2);
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
__global__ void triadd_layernorm_kernel_half2(
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
    __half2* input1 = reinterpret_cast<__half2*>(in1);
    __half2* input2 = reinterpret_cast<__half2*>(in2);
    __half2* input3 = reinterpret_cast<__half2*>(in3);
    __half2* output = reinterpret_cast<__half2*>(data_out);
Shucai Xiao's avatar
Shucai Xiao committed
228
    auto rnum       = __float2half2_rn(1.0f / batch_item_num);
Shucai Xiao's avatar
Shucai Xiao committed
229
230
231
232
233
234
235
236
237
238
    batch_item_num /= 2;
    extern MIGRAPHX_DEVICE_SHARED __half2 buffer2[];
    __half2* in_data_reduce = buffer2;
    __half2* in_data        = buffer2 + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = __hadd2(__hadd2(input1[idx], input2[idx]), input3[idx]);
Shucai Xiao's avatar
Shucai Xiao committed
239
240
        in_data_reduce[i] = in_data[i];
        // in_data_reduce[i] = __hmul2(in_data[i], rnum);
Shucai Xiao's avatar
Shucai Xiao committed
241
242
243
244
    }

    auto m =
        block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
Shucai Xiao's avatar
Shucai Xiao committed
245
246
    m = __hmul2(m, rnum);

Shucai Xiao's avatar
Shucai Xiao committed
247
248
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
249
        in_data[i] = __hsub2(in_data[i], m);
Shucai Xiao's avatar
Shucai Xiao committed
250
251
        // in_data_reduce[i] = __hmul2(__hmul2(in_data[i], in_data[i]), rnum);
        in_data_reduce[i] = __hmul2(in_data[i], in_data[i]);
Shucai Xiao's avatar
Shucai Xiao committed
252
253
254
    }

    m = block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
Shucai Xiao's avatar
Shucai Xiao committed
255
    m = __hmul2(m, rnum);
Shucai Xiao's avatar
Shucai Xiao committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    auto eps = __float2half2_rn(1.0e-12f);
    auto r   = __hadd2(m, eps);
    r        = h2rsqrt(r);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
        output[idx] = __hmul2(in_data[i], r);
    }
}

template <class T>
__device__ T
block_reduce_half(T* buffer, index_int batch_item_num, index_int tid, index_int block_size)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = __float2half(__half2float(buffer[tid]) + __half2float(buffer[tid + s]));
        }
        __syncthreads();
    }

    return buffer[0];
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
__global__ void triadd_layernorm_kernel_half(
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
    __half* input1 = reinterpret_cast<__half*>(in1);
    __half* input2 = reinterpret_cast<__half*>(in2);
    __half* input3 = reinterpret_cast<__half*>(in3);
    __half* output = reinterpret_cast<__half*>(data_out);
    extern MIGRAPHX_DEVICE_SHARED __half bufferh[];
    __half* in_data_reduce = bufferh;
    __half* in_data        = bufferh + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    auto rnum = 1.0f / batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = __float2half(__half2float(input1[idx]) + __half2float(input2[idx]) +
                                  __half2float(input3[idx]));
        in_data_reduce[i] = __float2half(__half2float(in_data[i]) * __half2float(rnum));
    }

    auto m = block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size);
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        in_data[i] = __float2half(__half2float(in_data[i]) - __half2float(m));
        in_data_reduce[i] =
            __float2half(__half2float(in_data[i]) * __half2float(in_data[i]) * __half2float(rnum));
    }

    m = __float2half(
        __half2float(block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size)) +
        1.0e-12f);
    auto r = __float2half(rsqrt(__half2float(m)));

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
        output[idx] = __float2half(__half2float(in_data[i]) * __half2float(r));
    }
}

template <class T>
__device__ T block_reduce(T* buffer, index_int batch_item_num, index_int tid, index_int block_size)
{
    __syncthreads();
    for(index_int s = block_size; s > 0; s >>= 1)
    {
        if(tid < s and tid + s < batch_item_num)
        {
            buffer[tid] = buffer[tid] + buffer[tid + s];
        }
        __syncthreads();
    }

    return buffer[0];
}

// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
template <class T>
__global__ void triadd_layernorm_kernel(
    void* in1, void* in2, void* in3, void* data_out, index_int batch_item_num, index_int block_size)
{
    T* input1 = reinterpret_cast<T*>(in1);
    T* input2 = reinterpret_cast<T*>(in2);
    T* input3 = reinterpret_cast<T*>(in3);
    T* output = reinterpret_cast<T*>(data_out);
    extern MIGRAPHX_DEVICE_SHARED T buffer[];
    T* in_data_reduce = buffer;
    T* in_data        = buffer + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    auto rnum = 1.0f / batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = input1[idx] + input2[idx] + input3[idx];
364
365
        in_data_reduce[i] = in_data[i];
        // in_data_reduce[i] = __half2float(in_data[i]) * rnum;
Shucai Xiao's avatar
Shucai Xiao committed
366
367
368
    }

    auto m = block_reduce(in_data_reduce, batch_item_num, threadIdx.x, block_size);
Shucai Xiao's avatar
Shucai Xiao committed
369
    m      = m * rnum;
Shucai Xiao's avatar
Shucai Xiao committed
370
371
372
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        in_data[i]        = in_data[i] - m;
373
374
        in_data_reduce[i] = in_data[i] * in_data[i];
        // in_data_reduce[i] = __half2float(in_data[i] * in_data[i]) * rnum;
Shucai Xiao's avatar
Shucai Xiao committed
375
    }
Shucai Xiao's avatar
Shucai Xiao committed
376
377
    m      = block_reduce(in_data_reduce, batch_item_num, threadIdx.x, block_size);
    m      = m * rnum + 1.0e-12f;
Shucai Xiao's avatar
Shucai Xiao committed
378
379
380
381
    auto r = rsqrt(m);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
382
        int idx = i + start;
383
384
        // output[idx] = __half2float(in_data[i]) * r;
        output[idx] = in_data[i] * r;
Shucai Xiao's avatar
Shucai Xiao committed
385
386
387
    }
}

Paul Fultz II's avatar
Paul Fultz II committed
388
389
390
391
392
393
void triadd_layernorm(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const argument& arg2,
                      const argument& arg3)
{
Shucai Xiao's avatar
Shucai Xiao committed
394
395
396
    auto in_s           = arg1.get_shape();
    auto type           = in_s.type();
    auto batch_item_num = in_s.lens().back();
397
    if(type == shape::half_type and (batch_item_num % 2) == 0)
Shucai Xiao's avatar
Shucai Xiao committed
398
    {
399
400
401
402
403
        auto half2_block_size = compute_block_size(batch_item_num, 1024);
        int block_num         = in_s.elements() / batch_item_num;
        int shared_size       = batch_item_num * 2 * in_s.type_size();
        half2_block_size      = half2_block_size / 4;
        triadd_layernorm_kernel_half2<<<block_num, half2_block_size, shared_size, stream>>>(
Shucai Xiao's avatar
Shucai Xiao committed
404
            arg1.data(), arg2.data(), arg3.data(), result.data(), batch_item_num, half2_block_size);
Shucai Xiao's avatar
Shucai Xiao committed
405
    }
Shucai Xiao's avatar
Shucai Xiao committed
406
407
408
409
410
411
    else
    {
        layernorm_fusion(stream, result, arg1, arg2, arg3)(
            [](auto x, auto y, auto z) { return x + y + z; },
            [](auto x, auto& y, auto...) { y = x; });
    }
Paul Fultz II's avatar
Paul Fultz II committed
412
413
}

Shucai Xiao's avatar
Shucai Xiao committed
414
415
__global__ void
layernorm_kernel_half2(void* in1, void* data_out, index_int batch_item_num, index_int block_size)
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
{
    __half2* input1 = reinterpret_cast<__half2*>(in1);
    __half2* output = reinterpret_cast<__half2*>(data_out);
    auto rnum       = __float2half2_rn(1.0f / batch_item_num);
    batch_item_num /= 2;
    extern MIGRAPHX_DEVICE_SHARED __half2 buffer2[];
    __half2* in_data_reduce = buffer2;
    __half2* in_data        = buffer2 + batch_item_num;

    int start = blockIdx.x * batch_item_num;
    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx           = i + start;
        in_data[i]        = input1[idx];
        in_data_reduce[i] = in_data[i];
    }

    auto m =
        block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
    m = __hmul2(m, rnum);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
Shucai Xiao's avatar
Shucai Xiao committed
439
        in_data[i]        = __hsub2(in_data[i], m);
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        in_data_reduce[i] = __hmul2(in_data[i], in_data[i]);
    }

    m = block_reduce_half2(in_data_reduce, batch_item_num, threadIdx.x, block_size, half2_sum{});
    m = __hmul2(m, rnum);

    auto eps = __float2half2_rn(1.0e-12f);
    auto r   = __hadd2(m, eps);
    r        = h2rsqrt(r);

    for(int i = threadIdx.x; i < batch_item_num; i += block_size)
    {
        int idx     = i + start;
        output[idx] = __hmul2(in_data[i], r);
    }
}

457
458
void layernorm(hipStream_t stream, const argument& result, const argument& arg1)
{
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    auto in_s           = arg1.get_shape();
    auto type           = in_s.type();
    auto batch_item_num = in_s.lens().back();
    if(type == shape::half_type and (batch_item_num % 2) == 0)
    {
        auto half2_block_size = compute_block_size(batch_item_num, 1024);
        int block_num         = in_s.elements() / batch_item_num;
        int shared_size       = batch_item_num * 2 * in_s.type_size();
        half2_block_size      = half2_block_size / 4;
        layernorm_kernel_half2<<<block_num, half2_block_size, shared_size, stream>>>(
            arg1.data(), result.data(), batch_item_num, half2_block_size);
    }
    else
    {
        layernorm_fusion(stream, result, arg1)([](auto x) { return x; },
Shucai Xiao's avatar
Shucai Xiao committed
474
                                               [](auto x, auto& y, auto) { y = x; });
475
    }
476
477
}

kahmed10's avatar
kahmed10 committed
478
479
480
481
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx