nfnet_inference.ipynb 6.81 KB
Newer Older
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# NFNet Inference with AMD MIGraphX\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Normalizer-Free ResNet is a new residual convolutional network providing new state-of-the-art Top-1 accuracy of 86.5% at ImageNet dataset. The most important feature of the model is removing batch normalization. Instead of batch normalization, it uses adaptive gradient clipping to provide same regularization effect of BatchNorm. <br> Details of this network: https://arxiv.org/abs/2102.06171\n",
    "\n",
    "In this notebook, we are showing: <br>\n",
    "- How to optimize NFNet ONNX model with AMD MIGraphX.\n",
    "- How to run inference on AMD GPU with the optimized ONNX model.\n",
    "\n",
    "The NFNet utilized in this example is the smallest NFNet version, F0: 71.5M parameters (83.6% top-1 accuracy on ImageNet)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Requirements"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!apt-get update\n",
    "!apt-get install ffmpeg libsm6 libxext6  -y "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip3 install --upgrade pip\n",
    "!pip3 install -r requirements_nfnet.txt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import cv2\n",
    "import json\n",
    "from PIL import Image\n",
    "import time\n",
    "from os import path "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Importing AMD MIGraphX Python Module"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import migraphx"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create NFNet ONNX file\n",
    "Following repository provides functionality to create NFNet ONNX file from PyTorch model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!wget -nc https://www.dropbox.com/s/u4ga8zyxtppfzxc/dm_nfnet_f0.onnx"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load ImageNet labels"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('../python_api_inference/imagenet_simple_labels.json') as json_data:\n",
    "    labels = json.load(json_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "## Load ONNX model using MIGraphX"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = migraphx.parse_onnx(\"dm_nfnet_f0.onnx\")\n",
    "model.compile(migraphx.get_target(\"gpu\"))\n",
    "\n",
    "print(model.get_parameter_names())\n",
    "print(model.get_parameter_shapes())\n",
    "print(model.get_output_shapes())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Functions for image processing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def make_nxn(image, n):\n",
    "    height, width = image.shape[:2]    \n",
    "    if height > width:\n",
    "        dif = height - width\n",
    "        bar = dif // 2 \n",
    "        square = image[(bar + (dif % 2)):(height - bar),:]\n",
    "        return cv2.resize(square, (n, n))\n",
    "    elif width > height:\n",
    "        dif = width - height\n",
    "        bar = dif // 2\n",
    "        square = image[:,(bar + (dif % 2)):(width - bar)]\n",
    "        return cv2.resize(square, (n, n))\n",
    "    else:\n",
    "        return cv2.resize(image, (n, n))\n",
    "    \n",
    "def preprocess(img_data):\n",
    "    mean_vec = np.array([0.485, 0.456, 0.406])\n",
    "    stddev_vec = np.array([0.229, 0.224, 0.225])\n",
    "    norm_img_data = np.zeros(img_data.shape).astype('float32')\n",
    "    for i in range(img_data.shape[0]):  \n",
    "        norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]\n",
    "    return norm_img_data\n",
    "\n",
    "def input_process(frame, dim):\n",
    "    # Crop and resize original image\n",
    "    cropped = make_nxn(frame, dim)\n",
    "    # Convert from HWC to CHW\n",
    "    chw = cropped.transpose(2,0,1)\n",
    "    # Apply normalization\n",
    "    pp = preprocess(chw)\n",
    "    # Add singleton dimension (CHW to NCHW)\n",
    "    data = np.expand_dims(pp.astype('float32'),0)\n",
    "    return data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Download example image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Fetch example image: traffic light\n",
    "!wget -nc http://farm5.static.flickr.com/4072/4462811418_8bc2bd42ca_z_d.jpg -O traffic_light.jpg\n",
    "# Read the image\n",
    "im = cv2.imread('traffic_light.jpg')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Process the read image to conform input requirements\n",
    "data_input = input_process(im, 192)\n",
    "\n",
    "# Run the model\n",
    "start = time.time()\n",
    "results = model.run({'inputs':data_input}) # Your first inference would take longer than the following ones.\n",
216
    "print(f\"Time inference took: {1000*(time.time() - start):.2f}ms\")\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    "# Extract the index of the top prediction\n",
    "res_npa = np.array(results[0])\n",
    "print(f\"\\nResult: {labels[np.argmax(res_npa)]}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Run the model again, first one would take long\n",
    "start = time.time()\n",
    "results = model.run({'inputs':data_input}) # Your first inference would take longer than the following ones.\n",
231
    "print(f\"Time inference took: {1000*(time.time() - start):.2f}ms\")\n",
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    "# Extract the index of the top prediction\n",
    "res_npa = np.array(results[0])\n",
    "print(f\"\\nResult: {labels[np.argmax(res_npa)]}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}