{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# NFNet Inference with AMD MIGraphX\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Normalizer-Free ResNet is a new residual convolutional network providing new state-of-the-art Top-1 accuracy of 86.5% at ImageNet dataset. The most important feature of the model is removing batch normalization. Instead of batch normalization, it uses adaptive gradient clipping to provide same regularization effect of BatchNorm.
Details of this network: https://arxiv.org/abs/2102.06171\n", "\n", "In this notebook, we are showing:
\n", "- How to optimize NFNet ONNX model with AMD MIGraphX.\n", "- How to run inference on AMD GPU with the optimized ONNX model.\n", "\n", "The NFNet utilized in this example is the smallest NFNet version, F0: 71.5M parameters (83.6% top-1 accuracy on ImageNet)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Requirements" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!apt-get update\n", "!apt-get install ffmpeg libsm6 libxext6 -y " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip3 install --upgrade pip\n", "!pip3 install -r requirements_nfnet.txt" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import cv2\n", "import json\n", "from PIL import Image\n", "import time\n", "from os import path " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Importing AMD MIGraphX Python Module" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import migraphx" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create NFNet ONNX file\n", "Following repository provides functionality to create NFNet ONNX file from PyTorch model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!wget -nc https://www.dropbox.com/s/u4ga8zyxtppfzxc/dm_nfnet_f0.onnx" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load ImageNet labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "with open('../python_api_inference/imagenet_simple_labels.json') as json_data:\n", " labels = json.load(json_data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "## Load ONNX model using MIGraphX" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = migraphx.parse_onnx(\"dm_nfnet_f0.onnx\")\n", "model.compile(migraphx.get_target(\"gpu\"))\n", "\n", "print(model.get_parameter_names())\n", "print(model.get_parameter_shapes())\n", "print(model.get_output_shapes())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Functions for image processing" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def make_nxn(image, n):\n", " height, width = image.shape[:2] \n", " if height > width:\n", " dif = height - width\n", " bar = dif // 2 \n", " square = image[(bar + (dif % 2)):(height - bar),:]\n", " return cv2.resize(square, (n, n))\n", " elif width > height:\n", " dif = width - height\n", " bar = dif // 2\n", " square = image[:,(bar + (dif % 2)):(width - bar)]\n", " return cv2.resize(square, (n, n))\n", " else:\n", " return cv2.resize(image, (n, n))\n", " \n", "def preprocess(img_data):\n", " mean_vec = np.array([0.485, 0.456, 0.406])\n", " stddev_vec = np.array([0.229, 0.224, 0.225])\n", " norm_img_data = np.zeros(img_data.shape).astype('float32')\n", " for i in range(img_data.shape[0]): \n", " norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]\n", " return norm_img_data\n", "\n", "def input_process(frame, dim):\n", " # Crop and resize original image\n", " cropped = make_nxn(frame, dim)\n", " # Convert from HWC to CHW\n", " chw = cropped.transpose(2,0,1)\n", " # Apply normalization\n", " pp = preprocess(chw)\n", " # Add singleton dimension (CHW to NCHW)\n", " data = np.expand_dims(pp.astype('float32'),0)\n", " return data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Download example image" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Fetch example image: traffic light\n", "!wget -nc http://farm5.static.flickr.com/4072/4462811418_8bc2bd42ca_z_d.jpg -O traffic_light.jpg\n", "# Read the image\n", "im = cv2.imread('traffic_light.jpg')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Process the read image to conform input requirements\n", "data_input = input_process(im, 192)\n", "\n", "# Run the model\n", "start = time.time()\n", "results = model.run({'inputs':data_input}) # Your first inference would take longer than the following ones.\n", "print(f\"Time inference took: {1000*(time.time() - start):.2f}ms\")\n", "# Extract the index of the top prediction\n", "res_npa = np.array(results[0])\n", "print(f\"\\nResult: {labels[np.argmax(res_npa)]}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Run the model again, first one would take long\n", "start = time.time()\n", "results = model.run({'inputs':data_input}) # Your first inference would take longer than the following ones.\n", "print(f\"Time inference took: {1000*(time.time() - start):.2f}ms\")\n", "# Extract the index of the top prediction\n", "res_npa = np.array(results[0])\n", "print(f\"\\nResult: {labels[np.argmax(res_npa)]}\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }