onnx_parser.cpp 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul Fultz II's avatar
Paul Fultz II committed
24
25
26
27
28
29
30
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
31
#include <migraphx/common.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
32
33
34
35
36
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>
37
#include <migraphx/float8.hpp>
38
#include <migraphx/env.hpp>
39
#include <onnx.pb.h>
Paul Fultz II's avatar
Paul Fultz II committed
40
41
42

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
43
44
45
namespace onnx {

MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_ONNX_PARSER)
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
static shape shape_from_dyn_dims(shape::type_t shape_type,
                                 const std::vector<shape::dynamic_dimension>& dyn_dims)
{
    if(std::all_of(dyn_dims.begin(), dyn_dims.end(), [](auto dd) { return dd.is_fixed(); }))
    {
        std::vector<std::size_t> dims;
        std::transform(dyn_dims.cbegin(), dyn_dims.cend(), std::back_inserter(dims), [](auto d) {
            return d.max;
        });
        return {shape_type, dims};
    }
    return {shape_type, dyn_dims};
}

Paul Fultz II's avatar
Paul Fultz II committed
61
62
63
64
65
66
67
68
69
70
71
72
73
static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
Shucai Xiao's avatar
Shucai Xiao committed
74
75
76
77
78
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
79
        return literal{shape_type};
Shucai Xiao's avatar
Shucai Xiao committed
80
81
    }

Paul Fultz II's avatar
Paul Fultz II committed
82
83
84
85
86
87
88
89
90
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
Shucai Xiao's avatar
Shucai Xiao committed
91
92
93
94
95
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
96
        return literal{shape_type};
Shucai Xiao's avatar
Shucai Xiao committed
97
98
99
    }

    // scalar input
Paul Fultz II's avatar
Paul Fultz II committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
    std::size_t size = r.size();
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
Shucai Xiao's avatar
Shucai Xiao committed
114
115
116
    auto attr       = ins->get_operator().to_value();
    std::string key = "require_std_shape";
    if((attr.get(key, false)) or (not ins->get_shape().standard()))
Paul Fultz II's avatar
Paul Fultz II committed
117
    {
Shucai Xiao's avatar
Shucai Xiao committed
118
        return add_instruction(make_op("contiguous"), ins);
Paul Fultz II's avatar
Paul Fultz II committed
119
120
    }

Shucai Xiao's avatar
Shucai Xiao committed
121
    return ins;
Paul Fultz II's avatar
Paul Fultz II committed
122
123
124
125
126
127
128
129
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Charlie Lin's avatar
Charlie Lin committed
130
131
132
133
134
135
136
137
138
139
140
141
142
        instruction_ref bias_bcast;
        // if curr_ins has a dynamic output shape use 2 input broadcast
        if(curr_ins->get_shape().dynamic())
        {
            bias_bcast =
                mod->add_instruction(make_op("broadcast", {{"axis", axis}}), args[2], curr_ins);
        }
        else
        {
            bias_bcast = mod->add_instruction(
                make_op("broadcast", {{"axis", axis}, {"out_lens", curr_ins->get_shape().lens()}}),
                args[2]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
143
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
144
145
146
147
148
149
150
151
    }
    return curr_ins;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
152
153
154
    return this->add_common_op(op_name, arg0, arg1);
}

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/**
 * @brief A wrapper for insert_common_args(), which constructs an argument list
 * and inserts multibroadcast and convert ops to match inputs to a common shape and type
 * as required.  The requested operation is placed after the added multibroadcast and convert ops,
 * if any, so that their results are transparent to the programmer.
 *
 * Use add_common_op() to match input sizes when inputs may be
 *  either static or dynamic.
 *
 * @param op_name               string; Name of operation (op) to add; valid names are the same as
 * for make_op()
 *
 * @param inputs                vector of instruction_ref.  List of instructions for the new
 * operator.  Multibroadcast and convert operations, if needed, are deduced from these too.
 *
 * @return instruction_ref      Returns an instruction_ref which is the result of the requested
 * operation.
 *
 */
174
175
176
177
instruction_ref onnx_parser::node_info::add_common_op(const std::string& op_name,
                                                      std::vector<instruction_ref> inputs) const
{
    return migraphx::add_common_op(*mod, make_op(op_name), std::move(inputs));
Paul Fultz II's avatar
Paul Fultz II committed
178
179
180
181
182
183
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
184
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
185
186
}

Shucai Xiao's avatar
Shucai Xiao committed
187
188
189
190
191
192
193
instruction_ref onnx_parser::node_info::add_instruction(const operation& op,
                                                        const std::vector<instruction_ref>& args,
                                                        const std::vector<module_ref>& mods) const
{
    return mod->add_instruction(op, args, mods);
}

Paul Fultz II's avatar
Paul Fultz II committed
194
195
instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
196
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
234
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
235
{
236
    if(not contains(instructions, name))
Paul Fultz II's avatar
Paul Fultz II committed
237
    {
Shucai Xiao's avatar
Shucai Xiao committed
238
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
239
240
241
242
243
244
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
245
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
246
247
248
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
249
        this->path = parent_path.string();
Paul Fultz II's avatar
Paul Fultz II committed
250
251
252
253

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
Shucai Xiao's avatar
Shucai Xiao committed
254
255
256
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
257
258
        if(model.has_graph())
        {
259
            (void)this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
260
261
262
263
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
264
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
265
266
267
268
269
    }
}

void onnx_parser::parse_from(const void* data, std::size_t size)
{
Shucai Xiao's avatar
Shucai Xiao committed
270
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
271
272
273
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
277
278
        if(model.has_graph())
        {
279
            (void)this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
280
281
282
283
284
285
286
287
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
{
    const auto& opset_import = model.opset_import();
    int64_t version          = -1;
    for(const auto& opset : opset_import)
    {
        if(opset.has_version())
        {
            version = std::max(version, opset.version());
        }
    }

    return version;
}

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
void print_added_instructions(module* mod,
                              const std::vector<instruction_ref>& args,
                              const std::vector<instruction_ref>& result)
{
    // Print instructions added by the parser not in args
    std::vector<instruction_ref> added_instructions;
    fix([&](auto self, auto r) {
        for(auto ins : r)
        {
            if(contains(args, ins))
                continue;
            if(contains(added_instructions, ins))
                continue;
            self(ins->inputs());
            added_instructions.push_back(ins);
        }
    })(result);
    mod->debug_print(added_instructions);
}

std::unordered_map<std::string, instruction_ref>
parse_intializer(const onnx_parser& parser, module* mod, const onnx::GraphProto& graph)
Paul Fultz II's avatar
Paul Fultz II committed
325
{
Shucai Xiao's avatar
Shucai Xiao committed
326
    std::unordered_map<std::string, instruction_ref> mod_insts;
Paul Fultz II's avatar
Paul Fultz II committed
327
328
    for(auto&& f : graph.initializer())
    {
329
330
        if(enabled(MIGRAPHX_TRACE_ONNX_PARSER{}))
            std::cout << "initializer: " << f.name() << std::endl;
Shucai Xiao's avatar
Shucai Xiao committed
331
        // backup instructions in parent mod
332
333
334
        mod_insts[f.name()] = mod->add_literal(parser.parse_tensor(f));
        if(enabled(MIGRAPHX_TRACE_ONNX_PARSER{}))
            mod->debug_print(mod_insts[f.name()]);
Paul Fultz II's avatar
Paul Fultz II committed
335
    }
336
337
    return mod_insts;
}
Paul Fultz II's avatar
Paul Fultz II committed
338

339
340
341
342
343
344
std::unordered_map<std::string, instruction_ref>
parse_inputs(const onnx_parser& parser,
             module* mod,
             const onnx::GraphProto& graph,
             std::unordered_map<std::string, instruction_ref> mod_insts)
{
Paul Fultz II's avatar
Paul Fultz II committed
345
346
347
348
    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
349
        if(not contains(mod_insts, name))
Paul Fultz II's avatar
Paul Fultz II committed
350
        {
351
            // ONNX specification does not specify how to deal with the
Shucai Xiao's avatar
Shucai Xiao committed
352
353
354
            // scenario that a nested subgraph contains a parameter with the
            // name existed in its parent graph.
            // In the current implementation, MIGraphX throws an exception for that.
355
            if(contains(parser.instructions, name))
Shucai Xiao's avatar
Shucai Xiao committed
356
357
358
359
360
            {
                MIGRAPHX_THROW("module \"" + mod->name() + "\" has parameter name \"" + name +
                               "\" existing in parent graph!");
            }

361
            shape s;
362
            if(parser.map_input_dims.count(name) > 0)
Paul Fultz II's avatar
Paul Fultz II committed
363
            {
364
                std::vector<std::size_t> dims = parser.map_input_dims.at(name);
365
                s    = parser.parse_type(input.type(), dims);
366
            }
367
            else if(parser.map_dyn_input_dims.count(name) > 0)
368
369
            {
                shape::type_t shape_type = get_type(input.type().tensor_type().elem_type());
370
                s = shape_from_dyn_dims(shape_type, parser.map_dyn_input_dims.at(name));
371
372
373
            }
            else
            {
374
                s = parser.parse_type(input.type());
Paul Fultz II's avatar
Paul Fultz II committed
375
            }
Shucai Xiao's avatar
Shucai Xiao committed
376
            mod_insts[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
377
378
        }
    }
379
380
381
382
383
384
385
386
387
388
    return mod_insts;
}

std::vector<instruction_ref>
onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph, bool inlining)
{
    std::unordered_map<std::string, instruction_ref> mod_insts =
        parse_intializer(*this, mod, graph);

    mod_insts = parse_inputs(*this, mod, graph, mod_insts);
Paul Fultz II's avatar
Paul Fultz II committed
389

Shucai Xiao's avatar
Shucai Xiao committed
390
391
    std::copy(mod_insts.begin(), mod_insts.end(), std::inserter(instructions, instructions.end()));

Paul Fultz II's avatar
Paul Fultz II committed
392
393
    for(auto&& node : graph.node())
    {
394
395
396
        if(enabled(MIGRAPHX_TRACE_ONNX_PARSER{}))
            std::cout << "operator: " << node.op_type() << std::endl;

Paul Fultz II's avatar
Paul Fultz II committed
397
398
399
400
401
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
402
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
        std::size_t output_num = static_cast<std::size_t>(node.output().size());
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
417
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
418
419
420
421
422
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
423
424
425
            std::string node_name = node.op_type() + "_" + std::to_string(mod->size());
            result                = ops[node.op_type()](
                *this, {get_attributes(node), output_num, node_name, mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
426
427
428
429
430
431
432
433
        }

        output_num = std::min<std::size_t>(output_num, result.size());
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
434
435
436
437
438

        if(enabled(MIGRAPHX_TRACE_ONNX_PARSER{}))
        {
            print_added_instructions(mod, args, result);
        }
Paul Fultz II's avatar
Paul Fultz II committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
453
        [&](const auto& name) { return not(name.empty() or instructions.count(name) == 0); });
Paul Fultz II's avatar
Paul Fultz II committed
454
455
456
457
458
459
460

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

461
462
463
464
465
466
467
468
    if(not inlining)
    {
        // add the return instuction
        mod->add_return(output_ins);

        // Remove instructions added in module (this is turned off for subgraph inlining)
        erase_if(instructions, [&](auto&& p) { return mod->has_instruction(p.second); });
    }
Shucai Xiao's avatar
Shucai Xiao committed
469

470
    return output_ins;
Paul Fultz II's avatar
Paul Fultz II committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
489
490
    case onnx::AttributeProto::TYPE_PROTOS:
    case onnx::AttributeProto::TYPE_PROTO:
Paul Fultz II's avatar
Paul Fultz II committed
491
492
493
494
495
496
497
498
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
    std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
499
500
501
502
    auto type = get_type(t.data_type());
    shape tensor_shape(type, dims);
    auto external_data = t.external_data();
    if(not external_data.empty())
Paul Fultz II's avatar
Paul Fultz II committed
503
    {
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        const std::string& data_file = external_data.at(0).value();
        size_t num_data_fields       = external_data.size();
        size_t offset                = 0;
        size_t nbytes                = tensor_shape.bytes();

        if(num_data_fields > 1) // if offset field is present
        {
            offset = std::stoul(t.external_data().at(1).value());
        }
        if(num_data_fields > 2) // if nbytes field is present
        {
            nbytes = std::stoul(t.external_data().at(2).value());
        }
        auto raw_buffer = read_buffer(path + "/" + data_file, offset, nbytes);
Paul Fultz II's avatar
Paul Fultz II committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        std::string s(raw_buffer.begin(), raw_buffer.end());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
bpickrel's avatar
bpickrel committed
540
    case onnx::TensorProto::FLOAT16: {
Paul Fultz II's avatar
Paul Fultz II committed
541
542
543
544
545
546
547
548
549
550
551
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
552
553
554
555
556
557
558
559
560
561
562
563
    case onnx::TensorProto::FLOAT8E4M3FNUZ: {
        std::vector<int32_t> data_int32(t.int32_data().begin(), t.int32_data().end());
        std::vector<migraphx::fp8::fp8e4m3fnuz> data_fp8;
        std::transform(data_int32.begin(),
                       data_int32.end(),
                       std::back_inserter(data_fp8),
                       [](float raw_val) { return migraphx::fp8::fp8e4m3fnuz{raw_val}; });
        return create_literal(shape::fp8e4m3fnuz_type, dims, data_fp8);
    }
    case onnx::TensorProto::FLOAT8E5M2FNUZ:
    case onnx::TensorProto::FLOAT8E5M2:
    case onnx::TensorProto::FLOAT8E4M3FN:
Paul Fultz II's avatar
Paul Fultz II committed
564
565
566
567
568
569
570
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
571
shape onnx_parser::parse_type(const onnx::TypeProto& t) const
Paul Fultz II's avatar
Paul Fultz II committed
572
573
574
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());

575
    std::vector<shape::dynamic_dimension> dynamic_dims;
Paul Fultz II's avatar
Paul Fultz II committed
576
577
578
    auto&& tensor_dims = t.tensor_type().shape().dim();
    std::transform(tensor_dims.begin(),
                   tensor_dims.end(),
579
580
                   std::back_inserter(dynamic_dims),
                   [&](auto&& d) -> shape::dynamic_dimension {
Paul Fultz II's avatar
Paul Fultz II committed
581
582
583
584
                       if(d.has_dim_value())
                       {
                           if(static_cast<int>(d.dim_value()) <= 0)
                           {
585
                               return default_dyn_dim_value;
Paul Fultz II's avatar
Paul Fultz II committed
586
                           }
587
                           std::size_t tmp = d.dim_value();
588
                           return {tmp, tmp};
Paul Fultz II's avatar
Paul Fultz II committed
589
590
591
                       }
                       else
                       {
592
                           return default_dyn_dim_value;
Paul Fultz II's avatar
Paul Fultz II committed
593
594
595
                       }
                   });

596
597
    if(dynamic_dims.empty())
    {
Paul Fultz II's avatar
Paul Fultz II committed
598
        return {shape_type};
599
    }
600
    return shape_from_dyn_dims(shape_type, dynamic_dims);
Paul Fultz II's avatar
Paul Fultz II committed
601
602
}

603
604
605
606
607
608
609
610
611
shape onnx_parser::parse_type(const onnx::TypeProto& t,
                              const std::vector<std::size_t>& input_dims) const
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
    if(input_dims.empty())
        return {shape_type};
    return {shape_type, input_dims};
}

Paul Fultz II's avatar
Paul Fultz II committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
Umang Yadav's avatar
Umang Yadav committed
628
629
630
631
632
    case 18: {
        std::cout << "[Warning] : MIGraphX has BETA support for FP8. Using FP8 may result in "
                     "incorrect final outputs\n";
        return shape::fp8e4m3fnuz_type;
    }
633
634
635
636
637
638
    case 14:
    case 15:
    case 16:
    case 17:
    case 19:
    case 20:
bpickrel's avatar
bpickrel committed
639
640
    default: {
        MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
Paul Fultz II's avatar
Paul Fultz II committed
641
642
643
644
    }
    }
}

645
646
647
bool is_type_float(shape::type_t dtype)
{
    bool r = false;
648
    if(dtype == shape::float_type or dtype == shape::double_type or dtype == shape::half_type)
649
650
651
652
653
654
    {
        r = true;
    }
    return r;
}

Paul Fultz II's avatar
Paul Fultz II committed
655
656
657
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx