onnx_parser.cpp 15.1 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
    std::size_t size = r.size();
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
    if(ins->get_shape().standard())
    {
        return ins;
    }

    return add_instruction(make_op("contiguous"), ins);
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Shucai Xiao's avatar
Shucai Xiao committed
69
        auto bias_bcast = mod->add_instruction(
Paul Fultz II's avatar
Paul Fultz II committed
70
71
            make_op("broadcast", {{"axis", axis}, {"dims", curr_ins->get_shape().lens()}}),
            args[2]);
Shucai Xiao's avatar
Shucai Xiao committed
72
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    }
    return curr_ins;
}

std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                  std::vector<std::size_t> s1)
{
    // Example:
    // s0 = (3,2,4,5) and s1 = (2,1,1)
    //
    // In this case we need to broadcast (:,1,1) portion of
    // s1 plus broadcast the 1st dimension of s1
    // giving output_lens = (3,2,4,5)
    //
    // Another example:
    // s0 = (3,2,1,5) and s1 = (2,7,5)
    // In this case we need to broadcast the (:,:,1:,:) axis
    // of s0 plus the 1st dimension of s1 giving
    // output_lens = (3,2,7,5)
    if(s0.size() > s1.size())
    {
        s0.swap(s1);
    }

    std::vector<std::size_t> out_lens(s1);
    auto offset = s1.size() - s0.size();
    std::transform(
        s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
            if(a != b and a != 1 and b != 1)
            {
                MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + to_string_range(s0) + "} and {" +
                               to_string_range(s1) + "} mismatch!");
            }
            return std::max(a, b);
        });

    return out_lens;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
    if(arg0->get_shape().lens() != arg1->get_shape().lens())
    {
        // Get lengths for both arguments
        auto s0       = arg0->get_shape().lens();
        auto s1       = arg1->get_shape().lens();
        auto out_lens = compute_broadcasted_lens(s0, s1);

        auto l0 = arg0;
        if(arg0->get_shape().lens() != out_lens)
            l0 = add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}), arg0);

        auto l1 = arg1;
        if(arg1->get_shape().lens() != out_lens)
            l1 = add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}), arg1);

        return add_instruction(make_op(op_name), l0, l1);
    }
    else
    {
        return add_instruction(make_op(op_name), {arg0, arg1});
    }
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
143
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
144
145
146
147
}

instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
148
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
186
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
187
188
189
{
    if(!contains(instructions, name))
    {
Shucai Xiao's avatar
Shucai Xiao committed
190
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
191
192
193
194
195
196
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
197
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
198
199
200
201
202
203
204
205
206
207
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
        this->path = parent_path;

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
208
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
209
210
211
212
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
213
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
214
215
216
217
218
    }
}

void onnx_parser::parse_from(const void* data, std::size_t size)
{
Shucai Xiao's avatar
Shucai Xiao committed
219
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
220
221
222
223
224
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
225
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
226
227
228
229
230
231
232
233
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
234
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
Paul Fultz II's avatar
Paul Fultz II committed
235
236
237
{
    for(auto&& f : graph.initializer())
    {
Shucai Xiao's avatar
Shucai Xiao committed
238
        instructions[f.name()] = mod->add_literal(parse_tensor(f));
Paul Fultz II's avatar
Paul Fultz II committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    }

    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
        if(!contains(instructions, name))
        {
            std::vector<std::size_t> dims;
            if(map_input_dims.count(name) > 0)
            {
                dims = map_input_dims.at(name);
            }

            shape s            = parse_type(input.type(), dims);
Shucai Xiao's avatar
Shucai Xiao committed
254
            instructions[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
255
256
257
258
259
260
261
262
263
264
        }
    }

    for(auto&& node : graph.node())
    {
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
265
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
        std::size_t output_num = static_cast<std::size_t>(node.output().size());
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
280
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
281
282
283
284
285
286
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
            result = ops[node.op_type()](
Shucai Xiao's avatar
Shucai Xiao committed
287
                *this, {get_attributes(node), output_num, node.op_type(), mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        }

        output_num = std::min<std::size_t>(output_num, result.size());
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
        [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

    // add the return instuction
Shucai Xiao's avatar
Shucai Xiao committed
319
    mod->add_return(output_ins);
Paul Fultz II's avatar
Paul Fultz II committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
    std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
    if(not t.external_data().empty())
    {
        const std::string& data_file = t.external_data().at(0).value();
        auto raw_buffer              = read_buffer(path + "/" + data_file);
        std::string s(raw_buffer.begin(), raw_buffer.end());
        auto type = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        auto type            = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
    case onnx::TensorProto::FLOAT16:
    {
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
                              const std::vector<std::size_t>& input_dims) const
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
    if(!input_dims.empty())
    {
        return {shape_type, input_dims};
    }

    std::vector<std::size_t> dims;
    auto&& tensor_dims = t.tensor_type().shape().dim();
    std::transform(tensor_dims.begin(),
                   tensor_dims.end(),
                   std::back_inserter(dims),
                   [&](auto&& d) -> std::size_t {
                       if(d.has_dim_value())
                       {
                           if(static_cast<int>(d.dim_value()) <= 0)
                           {
                               return default_dim_value;
                           }
                           return d.dim_value();
                       }
                       else
                       {
                           return default_dim_value;
                       }
                   });

    if(dims.empty())
        return {shape_type};

    return {shape_type, dims};
}

shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
    default: { MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
    }
    }
}

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx