parse_pooling.cpp 6.24 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
5
#include <migraphx/op/pooling.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

struct parse_pooling : op_parser<parse_pooling>
{
    std::vector<op_desc> operators() const
    {
        return {{"AveragePool", "average"},
                {"GlobalAveragePool", "average"},
                {"GlobalMaxPool", "max"},
22
23
24
                {"MaxPool", "max"},
                {"LpPool", "lpnorm"},
                {"GlobalLpPool", "lpnorm"}};
Paul Fultz II's avatar
Paul Fultz II committed
25
26
27
28
29
30
31
    }

    instruction_ref parse(const op_desc& opd,
                          const onnx_parser& /*parser*/,
                          onnx_parser::node_info info,
                          std::vector<instruction_ref> args) const
    {
32
33
34
35
        const std::unordered_map<std::string, op::pooling_mode> mode_map = {
            {"max", op::pooling_mode::max},
            {"average", op::pooling_mode::average},
            {"lpnorm", op::pooling_mode::lpnorm}};
Paul Fultz II's avatar
Paul Fultz II committed
36
        std::string mode = opd.op_name;
37
        if(not contains(mode_map, mode))
38
        {
39
            MIGRAPHX_THROW("onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
40
        }
41
        operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
42
43
44
        value values = op.to_value();
        auto l0      = args[0];
        auto in_lens = l0->get_shape().lens();
Paul Fultz II's avatar
Paul Fultz II committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

        if(starts_with(opd.onnx_name, "Global"))
        {
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
        }

        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
        {
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
        }

        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
        }

        if(contains(info.attributes, "strides"))
        {
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
        }
        if(contains(info.attributes, "kernel_shape"))
        {
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
        }

81
82
83
84
85
86
        // lp_order attribute
        if(contains(info.attributes, "p"))
        {
            values["lp_order"] = info.attributes.at("p").i();
        }

Paul Fultz II's avatar
Paul Fultz II committed
87
88
89
90
91
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
92

Paul Fultz II's avatar
Paul Fultz II committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        if(contains(info.attributes, "pads"))
        {
            values["padding"].clear();
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

        if(contains(info.attributes, "auto_pad"))
        {
            values["padding"].clear();
            // return paddings could be empty, then setting to 0 for no padding
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
        }

        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
        }

        if(values["padding"].size() != kdims)
        {
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
        }

        if(values["stride"].size() != kdims)
        {
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
        }
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
        tune_padding_size(values, paddings, count_include_pad, slice_start);

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();

            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }
kahmed10's avatar
kahmed10 committed
154
        values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());
Paul Fultz II's avatar
Paul Fultz II committed
155
156
157

        check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
158

Paul Fultz II's avatar
Paul Fultz II committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        auto l1 = info.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = info.add_instruction(
                make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}),
                l1);
        }

        return l1;
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx