parse_pooling.cpp 5.6 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

struct parse_pooling : op_parser<parse_pooling>
{
    std::vector<op_desc> operators() const
    {
        return {{"AveragePool", "average"},
                {"GlobalAveragePool", "average"},
                {"GlobalMaxPool", "max"},
                {"MaxPool", "max"}};
    }

    instruction_ref parse(const op_desc& opd,
                          const onnx_parser& /*parser*/,
                          onnx_parser::node_info info,
                          std::vector<instruction_ref> args) const
    {
        std::string mode = opd.op_name;
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

        if(starts_with(opd.onnx_name, "Global"))
        {
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
        }

        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
        {
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
        }

        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
        }

        if(contains(info.attributes, "strides"))
        {
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
        }
        if(contains(info.attributes, "kernel_shape"))
        {
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
        }

        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
        if(contains(info.attributes, "pads"))
        {
            values["padding"].clear();
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

        if(contains(info.attributes, "auto_pad"))
        {
            values["padding"].clear();
            // return paddings could be empty, then setting to 0 for no padding
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
        }

        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
        }

        if(values["padding"].size() != kdims)
        {
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
        }

        if(values["stride"].size() != kdims)
        {
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
        }
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
        tune_padding_size(values, paddings, count_include_pad, slice_start);

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();

            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }
kahmed10's avatar
kahmed10 committed
136
        values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());
Paul Fultz II's avatar
Paul Fultz II committed
137
138
139

        check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
140

Paul Fultz II's avatar
Paul Fultz II committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        auto l1 = info.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = info.add_instruction(
                make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}),
                l1);
        }

        return l1;
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx