simplify_algebra.cpp 37 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
#include <migraphx/program.hpp>
4
#include <migraphx/op/add.hpp>
Paul's avatar
Paul committed
5
#include <migraphx/op/mul.hpp>
6
#include <migraphx/op/concat.hpp>
7
#include <migraphx/op/slice.hpp>
8
#include <migraphx/op/convolution.hpp>
9
#include <migraphx/op/contiguous.hpp>
10
#include <migraphx/op/as_shape.hpp>
Paul's avatar
Paul committed
11
#include <migraphx/op/broadcast.hpp>
12
13
#include <migraphx/op/neg.hpp>
#include <migraphx/op/recip.hpp>
14
#include <migraphx/op/reshape.hpp>
kahmed10's avatar
kahmed10 committed
15
#include <migraphx/op/rsqrt.hpp>
16
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
17
18
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
19
20
21
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

22
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <unordered_set>
Paul's avatar
Paul committed
24

Paul's avatar
Paul committed
25
namespace migraphx {
Paul's avatar
Paul committed
26
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
29
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
30
31
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
32
33
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
34
35
}

Paul's avatar
Paul committed
36
37
auto conv_const_weights()
{
Paul's avatar
Paul committed
38
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
39
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
40
41
}

Shucai Xiao's avatar
Shucai Xiao committed
42
43
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
44
45
46
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
47
    {
Paul's avatar
Paul committed
48
49
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
50
    }
Paul's avatar
Paul committed
51

52
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
53
    {
Paul's avatar
Paul committed
54
        auto ins      = r.result;
Paul's avatar
Paul committed
55
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
56
57
58
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
59
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
60
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
61
62
            return;

Paul's avatar
Paul committed
63
        auto new_a = p.insert_instruction(
64
65
66
67
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul  = p.insert_instruction(ins, make_op("mul"), new_a, w_ins);
Paul's avatar
Paul committed
68
69
        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
Paul's avatar
Paul committed
70
        p.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
71
    }
Paul's avatar
Paul committed
72
73
};

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

90
    void apply(module& p, match::matcher_result r) const
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
        auto slice_w_ins = p.insert_instruction(ins, w_slice_op, w_ins);

        auto new_a = p.insert_instruction(
129
130
131
132
            ins,
            make_op("broadcast", {{"axis", 0}, {"dims", slice_w_ins->get_shape().lens()}}),
            a_ins->inputs().front());
        auto new_mul = p.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
133
134
135

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
136
137
138
139
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
140
141
142
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
143
144
145
146
            sliced_weights.push_back(p.insert_instruction(
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
147

148
149
        auto new_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

        auto new_conv = p.insert_instruction(
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

        auto slice1 = p.insert_instruction(ins, slice_op, new_conv);
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
        p.replace_instruction(ins, slice1);
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
        for(auto output : conv_ins->outputs())
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
165
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
166
167
168
169
170
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
171
172
173
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
174
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
175
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
176
                match::used_once()),
Paul's avatar
Paul committed
177
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
178
179
    }

180
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
181
    {
Paul's avatar
Paul committed
182
        auto ins   = r.result;
Paul's avatar
Paul committed
183
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
184
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
185
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
186
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
187

188
189
190
        auto ax_ins = p.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = p.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
191
192
193
    }
};

Paul's avatar
Paul committed
194
struct find_add_lit_broadcast
Paul's avatar
Paul committed
195
196
197
198
199
200
201
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

202
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
203
204
205
206
207
208
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

209
210
        auto sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        p.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
211
212
213
214
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
215
{
Paul's avatar
Paul committed
216
217
    auto matcher() const
    {
Paul's avatar
Paul committed
218
        return match::name("add")(
Paul's avatar
Paul committed
219
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
220
221
    }

222
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
223
    {
Paul's avatar
Paul committed
224
225
226
227
228
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
229
230
231

        instruction_ref sumab;

Paul's avatar
Paul committed
232
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
233
234
235
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
236
237
238
            auto op     = a_ins->get_operator();
            auto presum = p.insert_instruction(
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
Paul's avatar
Paul committed
239
            sumab = p.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
240
241
242
        }
        else
        {
243
            sumab = p.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
244
245
        }

246
247
        auto sumxy = p.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        p.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
248
249
250
    }
};

Paul's avatar
Paul committed
251
252
253
254
struct find_inner_broadcast
{
    auto matcher() const
    {
255
256
        return pointwise(
            match::nargs(2),
Paul's avatar
Paul committed
257
            match::args(match::name("broadcast").bind("x"), match::name("broadcast").bind("y")));
Paul's avatar
Paul committed
258
259
    }

260
    void apply(module& p, match::matcher_result r) const
Paul's avatar
Paul committed
261
262
263
264
265
266
267
268
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];

        auto xbroadcast = any_cast<op::broadcast>(x_ins->get_operator());
        auto ybroadcast = any_cast<op::broadcast>(y_ins->get_operator());

Paul's avatar
Paul committed
269
        if(xbroadcast.axis != ybroadcast.axis)
Paul's avatar
Paul committed
270
271
            return;

Paul's avatar
Paul committed
272
273
        auto op = p.insert_instruction(
            ins, ins->get_operator(), x_ins->inputs().front(), y_ins->inputs().front());
Paul's avatar
Paul committed
274
275
276
277
        p.replace_instruction(ins, xbroadcast, op);
    }
};

278
struct find_concat_op
279
280
281
{
    auto matcher() const
    {
282
        return match::name("concat")(match::any_of[match::inputs()](
283
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
284
285
    }

286
287
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
288
    {
289
290
291
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
292
        {
293
            dim += ins->get_shape().lens().at(axis);
294
        }
295
296
297
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
298
299
    }

300
301
302
303
304
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

305
    void apply(module& p, const match::matcher_result& r) const
306
    {
307
308
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
309

310
311
312
313
314
315
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
316
317
            auto op = x->get_operator();
            if(not is_valid_op(op))
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
338
339
                auto concat =
                    p.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                concats.push_back(concat);
            }
            auto y = p.insert_instruction(ins, op, concats);
            return {y};

        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
            p.replace_instruction(ins, args.front());
        else
361
            p.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
362
363
364
    }
};

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
403
404
        return match::any(match::any_of[match::outputs()](match::name("slice")(
            match::any_of[match::outputs()](match::pointwise(), reduction()))));
405
406
    }

Shucai Xiao's avatar
Shucai Xiao committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

426
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
427
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
444

445
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
446
447
448
449
450
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
451
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
452
453
                }

454
455
456
457
458
459
460
461
462
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

488
    void apply(module& p, const match::matcher_result& r) const
489
    {
Shucai Xiao's avatar
Shucai Xiao committed
490
        auto ins    = r.result;
491
492
493
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
494

Shucai Xiao's avatar
Shucai Xiao committed
495
        for(const auto& group : get_split_groups(p, splits))
496
        {
Shucai Xiao's avatar
Shucai Xiao committed
497
498
499
500
501
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
502
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
503
            }
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
            instruction_ref c = p.end();
            if(start->inputs().size() == 1)
            {
                c = p.insert_instruction(std::next(ins), op, ins);
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
                    p.move_instructions(data, ins);

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
548
549
                auto concat = p.insert_instruction(
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
                c               = p.insert_instruction(std::next(ins), op, args);
            }
            if(c != p.end())
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
                    for(auto output : i->outputs())
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
568
569
                        auto x =
                            p.insert_instruction(output, make_op("contiguous"), output->inputs());
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
                        p.replace_instruction(output, output->get_operator(), x);
                    }

                    p.replace_instruction(i, split->get_operator(), c);
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

588
    void apply(module& p, const match::matcher_result& r) const
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
617
618
619
620
621
622
623
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
624
625
626
627
628
629
630
631
632
633
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
            p.replace_instruction(concat, args.front());
        else
            p.replace_instruction(concat, concat->get_operator(), args);
    }
};

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

    static shape compute_stride_shape(const shape& input, std::size_t n)
    {
        return {input.type(),
676
677
678
679
                {input.lens()[0],
                 input.lens()[1],
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[2] - 1) / n + 1)),
                 std::size_t(std::max<std::ptrdiff_t>(1, (input.lens()[3] - 1) / n + 1))},
680
681
682
683
684
685
                {input.strides()[0],
                 input.strides()[1],
                 input.strides()[2] * n,
                 input.strides()[3] * n}};
    }

686
    void apply(module& p, match::matcher_result r) const
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
                    b_input = p.insert_instruction(
716
717
718
719
720
                        ins,
                        make_op(
                            "as_shape",
                            {{"shape", to_value(compute_stride_shape(b_input->get_shape(), n))}}),
                        b_input);
721
722
723
724
725
726
727
728
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
                    a_input = p.insert_instruction(
729
730
731
732
733
                        ins,
                        make_op(
                            "as_shape",
                            {{"shape", to_value(compute_stride_shape(a_input->get_shape(), n))}}),
                        a_input);
734
735
736
737
738
739
740
741
                }
                else
                    return;
            }
            else
                return;
        }

742
743
744
745
        auto concat_input =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
        auto concat_weights =
            p.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
746
747
748
749
        p.replace_instruction(ins, new_op, concat_input, concat_weights);
    }
};

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

767
    void apply(module& p, const match::matcher_result& r) const
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
795
796
797
798
799
800
801
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
                p.move_instructions(arg, input);
            // TODO: Check if axises match
817
818
            auto concat =
                p.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
819
            auto fused     = p.insert_instruction(std::next(input), op, input, concat);
820
821
822
823
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
824
825
826
827
828
                p.replace_instruction(
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
829
830
831
832
833
834
835
836
837
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

838
839
840
841
842
843
844
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

845
    void apply(module& p, match::matcher_result r) const
846
847
848
849
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

850
        auto recip = p.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
851
852
853

        auto args = ins->inputs();

854
        p.replace_instruction(ins, make_op("mul"), args.front(), recip);
855
856
857
858
859
860
861
862
863
864
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

865
    void apply(module& p, match::matcher_result r) const
866
867
868
869
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

870
        auto neg = p.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
871
872
873

        auto args = ins->inputs();

874
        p.replace_instruction(ins, make_op("add"), args.front(), neg);
875
876
877
    }
};

kahmed10's avatar
kahmed10 committed
878
879
880
881
882
883
884
885
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

886
    void apply(module& p, match::matcher_result r) const
kahmed10's avatar
kahmed10 committed
887
888
889
890
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

891
        p.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
892
893
894
    }
};

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

911
    void apply(module& p, match::matcher_result r) const
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
939
940
941
942
943
944
945
946
947
948
949
950
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
951
952
953
        {
            return;
        }
954
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
955
956

        // calculate reshape output shape
957
958
959
960
961
962
963
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
964
965

        // insert the reshape instruction
966
967
        auto rsp_ins = p.insert_instruction(
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
968
969

        // replace the original reshape with slice
970
971
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
972
973
        {
            p.replace_instruction(
974
975
976
977
978
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
979
            start += vec_dims[i];
980
981
982
983
984
985
986
987
988
989
990
991
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

992
    void apply(module& p, match::matcher_result r) const
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
1018
1019
        auto tr =
            p.insert_instruction(std::next(input), make_op("transpose", {{"dims", perm}}), input);
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
        auto axis_new = static_cast<int64_t>(std::distance(perm.begin(), it));

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1033
1034
1035
1036
            p.replace_instruction(
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1037
1038
1039
1040
        }
    }
};

1041
void simplify_algebra::apply(module& p) const
Paul's avatar
Paul committed
1042
{
Paul's avatar
Paul committed
1043
    // Run simplifications multiple times
1044
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1045
    {
Paul's avatar
Paul committed
1046
        match::find_matches(p,
Paul's avatar
Paul committed
1047
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1048
1049
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1050
                            find_add_convs{},
1051
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1052
                            find_mul_conv{},
1053
                            find_mul_slice_conv{},
1054
                            find_mul_add{},
1055
1056
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1057
                            find_rsqrt{},
1058
                            find_concat_op{},
1059
                            find_split_concat{},
1060
1061
1062
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
Paul's avatar
Paul committed
1063
1064
        dead_code_elimination{}.apply(p);
    }
Paul's avatar
Paul committed
1065
}
Paul's avatar
Paul committed
1066

Paul's avatar
Paul committed
1067
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1068
} // namespace migraphx