onnx_parser.cpp 15.4 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pad_calc.hpp>
9
#include <migraphx/common.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
36
37
38
39
40
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
        return {};
    }

Paul Fultz II's avatar
Paul Fultz II committed
41
42
43
44
45
46
47
48
49
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
Shucai Xiao's avatar
Shucai Xiao committed
50
51
52
53
54
55
56
57
58
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
        return {};
    }

    // scalar input
Paul Fultz II's avatar
Paul Fultz II committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
    std::size_t size = r.size();
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
    return add_instruction(make_op("contiguous"), ins);
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Shucai Xiao's avatar
Shucai Xiao committed
82
        auto bias_bcast = mod->add_instruction(
83
            make_op("broadcast", {{"axis", axis}, {"out_lens", curr_ins->get_shape().lens()}}),
Paul Fultz II's avatar
Paul Fultz II committed
84
            args[2]);
Shucai Xiao's avatar
Shucai Xiao committed
85
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
86
87
88
89
90
91
92
93
    }
    return curr_ins;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
94
    return add_common_op(*mod, make_op(op_name), {arg0, arg1});
Paul Fultz II's avatar
Paul Fultz II committed
95
96
97
98
99
100
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
101
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
102
103
}

Shucai Xiao's avatar
Shucai Xiao committed
104
105
106
107
108
109
110
instruction_ref onnx_parser::node_info::add_instruction(const operation& op,
                                                        const std::vector<instruction_ref>& args,
                                                        const std::vector<module_ref>& mods) const
{
    return mod->add_instruction(op, args, mods);
}

Paul Fultz II's avatar
Paul Fultz II committed
111
112
instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
113
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
151
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
152
153
154
{
    if(!contains(instructions, name))
    {
Shucai Xiao's avatar
Shucai Xiao committed
155
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
156
157
158
159
160
161
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
162
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
163
164
165
166
167
168
169
170
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
        this->path = parent_path;

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
Shucai Xiao's avatar
Shucai Xiao committed
171
172
173
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
174
175
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
176
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
177
178
179
180
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
181
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
182
183
184
185
186
    }
}

void onnx_parser::parse_from(const void* data, std::size_t size)
{
Shucai Xiao's avatar
Shucai Xiao committed
187
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
188
189
190
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
194
195
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
196
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
197
198
199
200
201
202
203
204
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
{
    const auto& opset_import = model.opset_import();
    int64_t version          = -1;
    for(const auto& opset : opset_import)
    {
        if(opset.has_version())
        {
            version = std::max(version, opset.version());
        }
    }

    return version;
}

Shucai Xiao's avatar
Shucai Xiao committed
220
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
Paul Fultz II's avatar
Paul Fultz II committed
221
{
Shucai Xiao's avatar
Shucai Xiao committed
222
    std::unordered_map<std::string, instruction_ref> mod_insts;
Paul Fultz II's avatar
Paul Fultz II committed
223
224
    for(auto&& f : graph.initializer())
    {
Shucai Xiao's avatar
Shucai Xiao committed
225
226
        // backup instructions in parent mod
        mod_insts[f.name()] = mod->add_literal(parse_tensor(f));
Paul Fultz II's avatar
Paul Fultz II committed
227
228
229
230
231
232
    }

    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
Shucai Xiao's avatar
Shucai Xiao committed
233
        if(!contains(mod_insts, name))
Paul Fultz II's avatar
Paul Fultz II committed
234
        {
Shucai Xiao's avatar
Shucai Xiao committed
235
236
237
238
239
240
241
242
243
244
            // ONNX specification does not specify hwo to deal with the
            // scenario that a nested subgraph contains a parameter with the
            // name existed in its parent graph.
            // In the current implementation, MIGraphX throws an exception for that.
            if(contains(instructions, name))
            {
                MIGRAPHX_THROW("module \"" + mod->name() + "\" has parameter name \"" + name +
                               "\" existing in parent graph!");
            }

Paul Fultz II's avatar
Paul Fultz II committed
245
246
247
248
249
250
            std::vector<std::size_t> dims;
            if(map_input_dims.count(name) > 0)
            {
                dims = map_input_dims.at(name);
            }

Shucai Xiao's avatar
Shucai Xiao committed
251
252
            shape s         = parse_type(input.type(), dims);
            mod_insts[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
253
254
255
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
256
257
    std::copy(mod_insts.begin(), mod_insts.end(), std::inserter(instructions, instructions.end()));

Paul Fultz II's avatar
Paul Fultz II committed
258
259
260
261
262
263
264
    for(auto&& node : graph.node())
    {
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
265
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
        std::size_t output_num = static_cast<std::size_t>(node.output().size());
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
280
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
281
282
283
284
285
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
286
287
288
            std::string node_name = node.op_type() + "_" + std::to_string(mod->size());
            result                = ops[node.op_type()](
                *this, {get_attributes(node), output_num, node_name, mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        }

        output_num = std::min<std::size_t>(output_num, result.size());
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
        [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

    // add the return instuction
Shucai Xiao's avatar
Shucai Xiao committed
320
    mod->add_return(output_ins);
Shucai Xiao's avatar
Shucai Xiao committed
321
322
323

    // remove instructions added in this mod
    erase_if(instructions, [&](auto&& p) { return mod->has_instruction(p.second); });
Paul Fultz II's avatar
Paul Fultz II committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
    std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
    if(not t.external_data().empty())
    {
        const std::string& data_file = t.external_data().at(0).value();
        auto raw_buffer              = read_buffer(path + "/" + data_file);
        std::string s(raw_buffer.begin(), raw_buffer.end());
        auto type = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        auto type            = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
    case onnx::TensorProto::FLOAT16:
    {
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
                              const std::vector<std::size_t>& input_dims) const
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
    if(!input_dims.empty())
    {
        return {shape_type, input_dims};
    }

    std::vector<std::size_t> dims;
    auto&& tensor_dims = t.tensor_type().shape().dim();
    std::transform(tensor_dims.begin(),
                   tensor_dims.end(),
                   std::back_inserter(dims),
                   [&](auto&& d) -> std::size_t {
                       if(d.has_dim_value())
                       {
                           if(static_cast<int>(d.dim_value()) <= 0)
                           {
                               return default_dim_value;
                           }
                           return d.dim_value();
                       }
                       else
                       {
                           return default_dim_value;
                       }
                   });

    if(dims.empty())
        return {shape_type};

    return {shape_type, dims};
}

shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
    default: { MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
    }
    }
}

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx