py.rst 7.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
.. py:module:: migraphx

Python Reference
================

shape
-----

.. py:class:: shape(type, lens, strides=None)

    Describes the shape of a tensor. This includes size, layout, and data type/

.. py:method:: type()

15
    An integer that represents the type.
16
17
18
19
20

    :rtype: int

.. py:method:: lens()

21
    A list of the lengths of the shape.
22
23
24
25
26

    :rtype: list[int]

.. py:method:: strides()

27
    A list of the strides of the shape.
28
29
30
31
32

    :rtype: list[int]

.. py:method:: elements()

33
    The number of elements in the shape.
34
35
36
37
38

    :rtype: int

.. py:method:: bytes()

39
    The number of bytes the shape uses.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    :rtype: int

.. py:method:: type_size()

    The number of bytes one element uses

    :rtype: int

.. py:method:: packed()

    Returns true if the shape is packed.

    :rtype: bool

.. py:method:: transposed()

    Returns true if the shape is transposed.

    :rtype: bool

.. py:method:: broadcasted()

    Returns true if the shape is broadcasted.

    :rtype: bool

.. py:method:: standard()

    Returns true if the shape is a standard shape. That is, the shape is both packed and not transposed.

    :rtype: bool

.. py:method:: scalar()

    Returns true if all strides are equal to 0 (scalar tensor).

    :rtype: bool


argument
--------

.. py:class:: argument(data)

    Construct an argument from a python buffer. This can include numpy arrays.

.. py:method:: get_shape()

    Returns the shape of the argument.

    :rtype: shape

.. py:method:: tolist()

    Convert the elements of the argument to a python list.

    :rtype: list


.. py:function:: generate_argument(s, seed=0)

    Generate an argument with random data.

    :param shape s: Shape of argument to generate.
105
    :param int seed: The seed used for random number generation.
106
107
108

    :rtype: argument

109
.. py:function:: fill_argument(s, value)
110

111
    Fill argument of shape s with value.
112

113
114
    :param shape s: Shape of argument to fill.
    :param int value: Value to fill in the argument.
115

116
    :rtype argument
117
118

target
119
------
120
121
122

.. py:class:: target()

123
    This represents the compilation target.
124
125
126
127
128

.. py:function:: get_target(name)

    Constructs the target.

129
    :param str name: The name of the target to construct. This can either be 'gpu' or 'ref'.
130
131
132
133

    :rtype: target


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
module
------
.. py:method:: print()

    Prints the contents of the module as list of instructions.

.. py:method:: add_instruction(op, args, mod_args=[])
    
    Adds instruction into the module.

    :param operation op: 'migraphx.op' to be added as instruction.
    :param list[instruction] args: list of inputs to the op.
    :param list[module] mod_args: optional list of module arguments to the operator.
    :rtype instruction

149
150
151
152
153
154
155
.. py:method:: add_literal(data)

    Adds constant or literal data of provided shape into the module from python buffer which includes numpy array.    

    :param py::buffer data: Python buffer or numpy array 
    :rtype instruction 

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
.. py:method:: add_parameter(name, shape)
    
    Adds a parameter to the module with provided name and shape.

    :param str name: name of the parameter.
    :param shape shape: shape of the parameter.
    :rtype instruction

.. py:method:: add_return(args)

    Adds a return instruction into the module.

    :param list[instruction] args: instruction arguments which need to be returned from the module.
    :rtype instruction


172
173
174
175
176
program
-------

.. py:class:: program()

177
    Represents the computation graph to be compiled and run.
178
179
180

.. py:method:: clone()

181
    Make a copy of the program.
182
183
184

    :rtype: program

185
186
187
188
189
190
.. py:method:: get_parameter_names()
 
    Get all the input arguments' or parameters' names to the program as a list.

    :rtype list[str]

191
192
193
194
195
196
.. py:method:: get_parameter_shapes()

    Get the shapes of all the input parameters in the program.

    :rtype: dict[str, shape]

197
.. py:method:: get_output_shapes()
198

199
    Get the shapes of the final outputs of the program.
200

201
    :rtype: list[shape]
202

kahmed10's avatar
kahmed10 committed
203
.. py:method:: compile(t, offload_copy=True, fast_math=True)
204
205
206
207
208

    Compiles the program for the target and optimizes it.

    :param target t: This is the target to compile the program for.
    :param bool offload_copy: For targets with offloaded memory(such as the gpu), this will insert instructions during compilation to copy the input parameters to the offloaded memory and to copy the final result from the offloaded memory back to main memory.
kahmed10's avatar
kahmed10 committed
209
    :param bool fast_math: Optimize math functions to use faster approximate versions. There may be slight accuracy degredation when enabled.
210

211
212
213
214
215
216
217
218
219
220
221
222
223
.. py:method:: get_main_module()
    
    Get main module of the program.

    :rtype module

.. py:method:: create_module(name)
    
    Create and add a module of provided name into the program.

    :param str name : name of the new module.
    :rtype module

224
225
226
227
228
229
230
231
.. py:method:: run(params)

    Run the program.

    :param params: This is a map of the input parameters which will be used when running the program.
    :type params: dict[str, argument]

    :return: The result of the last instruction.
232
233
234
235
236
    :rtype: list[argument]

.. py:method:: sort()

    Sort the modules of the program such that instructions appear in topologically sorted order.
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

.. py:function:: quantize_fp16(prog, ins_names=["all"])

    Quantize the program to use fp16.

    :param program prog: Program to quantize.
    :param ins_names: List of instructions to quantize.
    :type ins_names: list[str]


.. py:function:: quantize_int8(prog, t, calibration=[], ins_names=["dot", "convolution"])

    Quantize the program to use int8.

    :param program prog: Program to quantize.
    :param target t: Target that will be used to run the calibration data.
    :param calibration: Calibration data used to decide the parameters to the int8 optimization.
    :type calibration: list[dict[str, argument]]
    :param ins_names: List of instructions to quantize.
    :type ins_names: list[str]


259
260
261
262
263
264
265
266
267
268
269
270
op
--
.. py::class:: op(name, kwargs)

    Construct an operation with name and arguments.
    
    :param str name : name of the operation, must be supported by MIGraphX.
    :param dict[str, any] kwargs: arguments to the operation.
    :rtype operation



271
272
273
parse_onnx
----------

274
.. py:function:: parse_onnx(filename, default_dim_value=1, map_input_dims={}, skip_unknown_operators=false, print_program_on_error=false, max_loop_iterations=10)
275
276
277
278

    Load and parse an onnx file.

    :param str filename: Path to file.
279
280
281
282
    :param str default_dim_value: default batch size to use (if not specified in onnx file).
    :param str map_input_dims: Explicitly specify the dims of an input.
    :param str skip_unknown_operators: Continue parsing onnx file if an unknown operator is found.
    :param str print_program_on_error: Print program if an error occurs.
283
    :param int max_loop_iterations: Maximum iteration number for the loop operator.
284
285
286
    :rtype: program

parse_tf
287
--------
288

289
.. py:function:: parse_tf(filename, is_nhwc=True, batch_size=1, map_input_dims=dict(), output_names=[])
290
291
292
293
294
295

    Load and parse an tensorflow protobuf file file.

    :param str filename: Path to file.
    :param bool is_nhwc: Use nhwc as default format.
    :param str batch_size: default batch size to use (if not specified in protobuf).
296
297
    :param dict[str, list[int]] map_input_dims: Optional arg to explictly specify dimensions of the inputs.
    :param list[str] output_names:  Optional argument specify names of the output nodes.
298
299
    :rtype: program

300
301
302
303
304
load
----

.. py:function:: load(filename, format='msgpack')

305
    Load a MIGraphX program.
306
307
308
309
310
311
312
313
314
315
316

    :param str filename: Path to file.
    :param str format: Format of file. Valid options are msgpack or json.

    :rtype: program

save
----

.. py:function:: save(p, filename, format='msgpack')

317
    Save a MIGraphX program.
318
319
320
321
322

    :param program p: Program to save.
    :param str filename: Path to file.
    :param str format: Format of file. Valid options are msgpack or json.