"vscode:/vscode.git/clone" did not exist on "9a70aecccb7034f2d53b7b400f3929c6c199cb90"
lowering.cpp 29 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
53
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
54

Paul's avatar
Paul committed
55
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
56
    {
57
58
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
59
60
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
61
62
63
64
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
65

66
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
67
68
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
69
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
70

71
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
72
73
74
75
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
76
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
77
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
78
79
80
81
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
82
83
                        });
                });
84
85
        }

86
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
87
        {
88
89
90
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
91
                    par_dfor(num_batch, num_channels, image_height, image_width)(
92
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
93
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
94
95
96
97
98
99
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
100
        }
101
102
103
104
105

        return output;
    }
};

Khalique's avatar
Khalique committed
106
struct cpu_lrn
Khalique's avatar
Khalique committed
107
{
Khalique's avatar
Khalique committed
108
    op::lrn op;
Khalique's avatar
Khalique committed
109

Khalique's avatar
Khalique committed
110
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
111
112
113
114
115
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
116
117
118
119
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Khalique's avatar
Khalique committed
120
            float alphaoverarea = op.alpha / op.size;
Khalique's avatar
Khalique committed
121
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
122

123
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
124
                float scale = 0;
Khalique's avatar
Khalique committed
125
126
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
127
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
128
129
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
130
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
131
132
133
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
134
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Khalique's avatar
Khalique committed
143
144
145
146
147
148
149
150
151
152
153
154
struct clip_op
{
    op::clip op;
    std::string name() const { return "cpu::clip"; }
    auto fcn() const
    {
        auto& max = op.max_val;
        auto& min = op.min_val;
        return [max, min](auto x) { return x > min ? (x < max ? x : max) : min ; };
    }
};

Paul's avatar
Paul committed
155
156
struct cpu_convolution
{
157
    op::convolution op;
Paul's avatar
Paul committed
158
159

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
160
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
161
162
163
164
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
165
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
166
167
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
168

Khalique's avatar
Khalique committed
169
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
170
171
172
173
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
174

Paul's avatar
Paul committed
175
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
176
177
178
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
179
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Khalique's avatar
Khalique committed
180
181
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
Khalique's avatar
Khalique committed
182
                    const int group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
183
184
185

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Khalique's avatar
Khalique committed
186
187
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
Khalique's avatar
Khalique committed
188
                        const int in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
189
190
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
191
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
192
193
194
195
196
197
198
199
200
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
201
202
struct cpu_im2col
{
203
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
204

Scott Thornton's avatar
Scott Thornton committed
205
206
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
207

wsttiger's avatar
wsttiger committed
208
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
209
    {
Scott Thornton's avatar
Scott Thornton committed
210
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
211
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
212
213
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
214
215
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
216
217
218
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
219
220
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
221
222
223
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
224
225
            int kdiv2_h;
            int kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
226
227
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
228
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
229
230
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
231
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
232
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
233
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
234
235
236
237
238
239
240
241
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
242
243
244
245
246
247
248
249
250
251
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
252
253
                }
            }
Scott Thornton's avatar
Scott Thornton committed
254
        });
Scott Thornton's avatar
Scott Thornton committed
255
256
257
258
        return result;
    }
};

Paul's avatar
Paul committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
286
    op::pooling op;
Paul's avatar
Paul committed
287
288

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
289
290
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
291
292
293
294
295
296
297
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
298
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
299
300
301
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
334
    op::contiguous op;
Paul's avatar
Paul committed
335
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
336
337
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
338
    {
Paul's avatar
Paul committed
339
        return op.compute(output_shape, std::move(args));
Paul's avatar
Paul committed
340
341
342
    }
};

Khalique's avatar
Khalique committed
343
struct cpu_pad
344
{
Khalique's avatar
Khalique committed
345
346
    op::pad op;
    std::string name() const { return "cpu::contiguous"; }
347
348
349
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
350
        assert(output_shape.standard());
351
        argument result{output_shape};
Khalique's avatar
Khalique committed
352
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
353
354

        visit_all(result, args[0])([&](auto output, auto input) {
355
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
356
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
357
358
359
360
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
361
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
362
            });
Khalique's avatar
Khalique committed
363
364
        });

365
366
367
368
369
370
371
372
373
374
375
        return result;
    }
};

struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Paul's avatar
Paul committed
376
        return op.compute(output_shape, std::move(args));
377
378
379
    }
};

Paul's avatar
Paul committed
380
381
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
382
383
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
384
385
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
386
387
388
389
390
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
391
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
392
    }
Paul's avatar
Paul committed
393

Paul's avatar
Paul committed
394
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
395
396
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrics, and C is broadcastable to A * B
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
421
422
423
424
        return result;
    }
};

425
426
427
428
429
430
431
432
struct cpu_gather
{
    op::gather op;
    std::string name() const { return "cpu::gather"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
433
        return op.compute(output_shape, std::move(args));
434
435
436
    }
};

Paul's avatar
Paul committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
451
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
452
453
454
455
456
457
458
459
460
461
462
463
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
464
465
466
467
468
469
470
471
472
struct log_op
{
    std::string name() const { return "cpu::log"; }
    auto fcn() const
    {
        return [](auto x) { return std::log(x); };
    }
};

Paul's avatar
Paul committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
struct sinh_op
{
    std::string name() const { return "cpu::sinh"; }
    auto fcn() const
    {
        return [](auto x) { return std::sinh(x); };
    }
};

struct cosh_op
{
    std::string name() const { return "cpu::cosh"; }
    auto fcn() const
    {
        return [](auto x) { return std::cosh(x); };
    }
};

Paul's avatar
Paul committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
577
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
578
579
580
    }
};

Khalique's avatar
Khalique committed
581
582
583
584
585
586
587
588
589
590
591
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
592
593
594
595
596
597
598
599
600
601
602
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
603
604
605
606
607
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
608
609
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
624
625
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
659
660
661
662
663
664
struct cpu_logsoftmax
{
    op::logsoftmax op;
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
665
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
666
667
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
668
        if(axis == 0)
669
670
671
672
673
674
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
675
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
676
        }
Shucai Xiao's avatar
Shucai Xiao committed
677
678
679
680
681
682
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
683
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
684
        if(op.axis == 0)
685
686
687
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
688
        else
689
690
691
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
692
693
694
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
695
696
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
697
            shape_for_each(output_shape, [&](auto idx) {
698
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
699
700
701
702
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
703
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
704
705
706
707
708
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
709
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
710
711
712
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
713
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
714
715
716
717
718
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
719
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
720
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
721
722
723
724
725
726
727
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

Khalique's avatar
Khalique committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
struct max_op
{
    std::string name() const { return "max"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::max(x, y); };
    }
};

struct min_op
{
    std::string name() const { return "min"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::min(x, y); };
    }
};

Paul's avatar
Paul committed
782
783
784
785
786
template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
787
788
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
828
829
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
830
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
831
        apply_map["batch_norm_inference"] =
832
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Khalique's avatar
Khalique committed
833
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
Khalique's avatar
Khalique committed
834
        apply_map["clip"]       = extend_op<cpu_unary<clip_op>, op::clip>();
835
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Khalique's avatar
Khalique committed
836
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
Scott Thornton's avatar
Scott Thornton committed
837
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
838
        apply_map["gather"]     = extend_op<cpu_gather, op::gather>();
Shucai Xiao's avatar
Shucai Xiao committed
839
        apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
Khalique's avatar
Khalique committed
840
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
Khalique's avatar
Khalique committed
841
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
wsttiger's avatar
wsttiger committed
842
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
Khalique's avatar
Khalique committed
843
        apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
844
845
        apply_map["sinh"]       = simple_op<cpu_unary<sinh_op>>();
        apply_map["cosh"]       = simple_op<cpu_unary<cosh_op>>();
wsttiger's avatar
wsttiger committed
846
847
848
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
Shucai Xiao's avatar
Shucai Xiao committed
849
        apply_map["log"]        = simple_op<cpu_unary<log_op>>();
wsttiger's avatar
wsttiger committed
850
851
852
853
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
854
855
856
        apply_map["asin"]       = simple_op<cpu_unary<asin_op>>();
        apply_map["acos"]       = simple_op<cpu_unary<acos_op>>();
        apply_map["atan"]       = simple_op<cpu_unary<atan_op>>();
Khalique's avatar
Khalique committed
857
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
858
859
860
861
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Khalique's avatar
Khalique committed
862
863
        apply_map["max"]        = simple_op<cpu_binary<max_op>>();
        apply_map["min"]        = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
864
865
866
867
868
869
870
871
872

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
873
            if(it->name() == "pooling")
Paul's avatar
Paul committed
874
875
876
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
877
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
878
            {
Paul's avatar
Paul committed
879
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
880
881
882
883
884
885
886
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
887
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
888
889
890
891
892
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
893
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
894
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
895
896
897
898
    }

    void apply_pooling(instruction_ref ins)
    {
899
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
900
        if(op.mode == "max")
Paul's avatar
Paul committed
901
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
902
        else if(op.mode == "average")
Paul's avatar
Paul committed
903
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
904
905
906
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
907
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
908
909

} // namespace cpu
Paul's avatar
Paul committed
910
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
911
} // namespace migraphx