normalize_attributes.cpp 8.59 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Shucai Xiao's avatar
Shucai Xiao committed
24
25
26
27
28
29
30
31
32
#include <migraphx/operation.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

33
34
35
36
37
/**
 * Parameters:
 * vec: the vector attribute to normalize
 * axes: the operator's axes attribute if it exists, empty otherwise
 * val: the normalize_axes key and options. Ex: normalize["axes"] =
38
39
40
 * value::array{normalize_attribute::include_min};
 * input_shape: input shape passed when calling
 * normalize_attributes(op&, input_shape)
41
42
43
 *
 * See normalize_attribute.hpp for explaining the options.
 */
44
template <class Message>
Shucai Xiao's avatar
Shucai Xiao committed
45
46
47
auto tune_attribute(const std::vector<int64_t>& vec,
                    const std::vector<int64_t>& axes,
                    const value& val,
48
                    const shape& input_shape,
49
                    Message m)
Shucai Xiao's avatar
Shucai Xiao committed
50
51
{
    std::vector<int64_t> result(vec);
52
    int64_t n_rank                                 = input_shape.ndim();
Shucai Xiao's avatar
Shucai Xiao committed
53
54
55
56
57
58
59
    std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
    if(contains(vec_attrs, op::normalize_attribute::use_output))
    {
        n_rank = n_rank + vec.size();
    }

    std::vector<int64_t> max_vals(vec.size(), n_rank);
60

Shucai Xiao's avatar
Shucai Xiao committed
61
62
    if(contains(vec_attrs, op::normalize_attribute::use_len))
    {
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        if(input_shape.dynamic())
        {
            std::transform(axes.begin(), axes.end(), max_vals.begin(), [&](auto i) {
                const auto& dd = input_shape.dyn_dims().at(i);
                if(not dd.is_fixed())
                {
                    MIGRAPHX_THROW(
                        "NORMALIZE_ATTR: 'use_lens' on a non-fixed dynamic dimension, axis=" +
                        std::to_string(i));
                }
                return dd.max;
            });
        }
        else
        {
            std::transform(axes.begin(), axes.end(), max_vals.begin(), [&](auto i) {
                return input_shape.lens().at(i);
            });
        }
Shucai Xiao's avatar
Shucai Xiao committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    }

    if(contains(vec_attrs, op::normalize_attribute::clip_max))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v > mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v >= mv ? mv - 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
107
            if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
108
            {
109
                MIGRAPHX_THROW(m() + "value out of range!");
Shucai Xiao's avatar
Shucai Xiao committed
110
111
112
113
            }
        }
        else
        {
114
            if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
115
            {
116
                MIGRAPHX_THROW(m() + "value out of range!");
Shucai Xiao's avatar
Shucai Xiao committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
            }
        }
    }

    std::vector<int64_t> min_vals = max_vals;
    std::transform(min_vals.begin(), min_vals.end(), min_vals.begin(), [](auto v) { return -v; });
    if(contains(vec_attrs, op::normalize_attribute::clip_min))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv + 1 ? mv + 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
146
147
            if(not std::equal(
                   min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
148
            {
149
                MIGRAPHX_THROW(m() + "attribute out of range!");
Shucai Xiao's avatar
Shucai Xiao committed
150
151
152
153
            }
        }
        else
        {
154
            if(not std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
155
            {
156
                MIGRAPHX_THROW(m() + "attribute out of range!");
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
161
162
163
164
165
166
167
168
            }
        }
    }

    std::transform(
        result.begin(), result.end(), max_vals.begin(), result.begin(), [](auto v, auto mv) {
            return v < 0 ? v + mv : v;
        });

    return result;
}

kahmed10's avatar
kahmed10 committed
169
170
171
172
173
174
175
176
177
178
auto tune_pad_attribute(const value& val)
{

    std::vector<size_t> vec_attrs = val.to_vector<size_t>();
    std::vector<size_t> result(vec_attrs.begin(), vec_attrs.end());
    std::copy(vec_attrs.begin(), vec_attrs.end(), std::back_inserter(result));

    return result;
}

179
180
181
/**
 * Assumptions:
 *  Dimensions to pad start from the third dimension (index 2).
182
 *  Called by compute_shape_op() with the shape of the first input.
183
 */
184
bool normalize_attributes(operation& op, const shape& input_shape)
Shucai Xiao's avatar
Shucai Xiao committed
185
186
187
188
{
    bool tuned = false;
    auto attrs = op.attributes();
    auto val   = op.to_value();
kahmed10's avatar
kahmed10 committed
189
190
    if(attrs.contains("normalize_padding"))
    {
191
192
        auto padding       = val.at(attrs.at("normalize_padding").to<std::string>());
        auto padding_size  = padding.size();
kahmed10's avatar
kahmed10 committed
193
194
        auto padding_start = 2;

195
        if(padding_size == 2 * (input_shape.ndim() - padding_start))
kahmed10's avatar
kahmed10 committed
196
            tuned = true;
197
        else if(padding_size != (input_shape.ndim() - padding_start))
kahmed10's avatar
kahmed10 committed
198
199
200
201
202
203
204
205
206
            MIGRAPHX_THROW("inconsistent padding size");
        else
        {
            auto result    = tune_pad_attribute(padding);
            val["padding"] = result;
            op.from_value(val);
            tuned = true;
        }
    }
207
    if(not attrs.contains("normalize_axes"))
Shucai Xiao's avatar
Shucai Xiao committed
208
    {
kahmed10's avatar
kahmed10 committed
209
        return tuned;
Shucai Xiao's avatar
Shucai Xiao committed
210
211
212
213
214
215
216
217
    }

    auto attr_v = attrs.at("normalize_axes").without_key();
    for(const auto& rv : attr_v)
    {
        const auto& key = rv.get_key();
        if(val.contains(key))
        {
218
219
            auto message = [&] { return op.name() + ": " + key + ": "; };
            auto vv      = val.at(key).without_key();
Shucai Xiao's avatar
Shucai Xiao committed
220
221
222
223
224
225
226
227
            if(vv.is_array())
            {
                std::vector<int64_t> axes;
                if(val.contains("axes"))
                {
                    axes = val.at("axes").without_key().to_vector<int64_t>();
                }
                auto vec    = vv.to_vector<int64_t>();
228
                auto result = tune_attribute(vec, axes, rv.without_key(), input_shape, message);
Shucai Xiao's avatar
Shucai Xiao committed
229
230
231
232
233
234
235
236
                val[key]    = result;
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
            else
            {
                auto num    = vv.to<int64_t>();
237
                auto result = tune_attribute({num}, {num}, rv.without_key(), input_shape, message);
Shucai Xiao's avatar
Shucai Xiao committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                val[key]    = result.front();
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
        }
        else
        {
            MIGRAPHX_THROW("NORMALIZE_ATTR : op " + op.name() + " attribute \"" + key +
                           "\" not exist!");
        }
    }

    return tuned;
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx