normalize_attributes.cpp 7.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Shucai Xiao's avatar
Shucai Xiao committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <migraphx/operation.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// different attributes
// 1) use_input(default)/use_output
// 2) use_rank(default)/use_len
// 3) clip_min(default)/not_clip_min
//   3.1) include_min(default)/exclude_min
// 4) clip_max(default)/not_clip_max
//   4.1) exclude_max(default)/include_max
auto tune_attribute(const std::vector<int64_t>& vec,
                    const std::vector<int64_t>& axes,
                    const value& val,
                    const std::vector<std::size_t>& lens)
{
    std::vector<int64_t> result(vec);
Paul Fultz II's avatar
Paul Fultz II committed
46
    int64_t n_rank                                 = lens.size();
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
    if(contains(vec_attrs, op::normalize_attribute::use_output))
    {
        n_rank = n_rank + vec.size();
    }

    std::vector<int64_t> max_vals(vec.size(), n_rank);
    if(contains(vec_attrs, op::normalize_attribute::use_len))
    {
        std::transform(axes.begin(), axes.end(), max_vals.begin(), [&](auto i) { return lens[i]; });
    }

    if(contains(vec_attrs, op::normalize_attribute::clip_max))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v > mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           max_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v >= mv ? mv - 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_max))
        {
82
            if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
83
84
85
86
87
88
            {
                MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
            }
        }
        else
        {
89
            if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            {
                MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
            }
        }
    }

    std::vector<int64_t> min_vals = max_vals;
    std::transform(min_vals.begin(), min_vals.end(), min_vals.begin(), [](auto v) { return -v; });
    if(contains(vec_attrs, op::normalize_attribute::clip_min))
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv ? mv : v; });
        }
        else
        {
            std::transform(result.begin(),
                           result.end(),
                           min_vals.begin(),
                           result.begin(),
                           [](auto v, auto mv) { return v < mv + 1 ? mv + 1 : v; });
        }
    }
    else
    {
        if(contains(vec_attrs, op::normalize_attribute::include_min))
        {
121
122
            if(not std::equal(
                   min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
123
124
125
126
127
128
            {
                MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
            }
        }
        else
        {
129
            if(not std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
Shucai Xiao's avatar
Shucai Xiao committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            {
                MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
            }
        }
    }

    std::transform(
        result.begin(), result.end(), max_vals.begin(), result.begin(), [](auto v, auto mv) {
            return v < 0 ? v + mv : v;
        });

    return result;
}

kahmed10's avatar
kahmed10 committed
144
145
146
147
148
149
150
151
152
153
auto tune_pad_attribute(const value& val)
{

    std::vector<size_t> vec_attrs = val.to_vector<size_t>();
    std::vector<size_t> result(vec_attrs.begin(), vec_attrs.end());
    std::copy(vec_attrs.begin(), vec_attrs.end(), std::back_inserter(result));

    return result;
}

Shucai Xiao's avatar
Shucai Xiao committed
154
155
156
157
158
bool normalize_attributes(operation& op, const std::vector<std::size_t>& lens)
{
    bool tuned = false;
    auto attrs = op.attributes();
    auto val   = op.to_value();
kahmed10's avatar
kahmed10 committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    if(attrs.contains("normalize_padding"))
    {
        auto padding      = val.at(attrs.at("normalize_padding").to<std::string>());
        auto padding_size = padding.size();
        // for now, assume the dimensions to pad start at dim 2
        auto padding_start = 2;

        if(padding_size == 2 * (lens.size() - padding_start))
            tuned = true;
        else if(padding_size != (lens.size() - padding_start))
            MIGRAPHX_THROW("inconsistent padding size");
        else
        {
            auto result    = tune_pad_attribute(padding);
            val["padding"] = result;
            op.from_value(val);
            tuned = true;
        }
    }
178
    if(not attrs.contains("normalize_axes"))
Shucai Xiao's avatar
Shucai Xiao committed
179
    {
kahmed10's avatar
kahmed10 committed
180
        return tuned;
Shucai Xiao's avatar
Shucai Xiao committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    }

    auto attr_v = attrs.at("normalize_axes").without_key();
    for(const auto& rv : attr_v)
    {
        const auto& key = rv.get_key();
        if(val.contains(key))
        {
            auto vv = val.at(key).without_key();
            if(vv.is_array())
            {
                std::vector<int64_t> axes;
                if(val.contains("axes"))
                {
                    axes = val.at("axes").without_key().to_vector<int64_t>();
                }
                auto vec    = vv.to_vector<int64_t>();
                auto result = tune_attribute(vec, axes, rv.without_key(), lens);
                val[key]    = result;
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
            else
            {
                auto num    = vv.to<int64_t>();
                auto result = tune_attribute({num}, {num}, rv.without_key(), lens);
                val[key]    = result.front();
                op.from_value(val);
                val   = op.to_value();
                tuned = true;
            }
        }
        else
        {
            MIGRAPHX_THROW("NORMALIZE_ATTR : op " + op.name() + " attribute \"" + key +
                           "\" not exist!");
        }
    }

    return tuned;
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx