"src/targets/vscode:/vscode.git/clone" did not exist on "ae3f1925ca22212d3942cd885878c7ba98e6cc7f"
fuse_mlir.cpp 19.8 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_EXTRA_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MLIR);
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);
53

54
55
56
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
57
58
    const bool mlir_disabled = enabled(MIGRAPHX_DISABLE_MLIR{});
    return not mlir_disabled;
59
60
61
62
63
#else
    return false;
#endif
}

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
static bool is_requested(std::string_view option, bool fallback = false)
{
    auto string_value = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
    if(string_value.empty())
        return fallback;
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}

bool mlir_attention_enabled()
{
#ifdef MIGRAPHX_MLIR
    if(not mlir_enabled())
        return false;
    return is_requested("attention");
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
84
#ifdef MIGRAPHX_MLIR
85
86

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
87
{
88
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
89
90
91
92
93
94
95
96
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

97
    shape compute_shape(const std::vector<shape>& inputs, const std::vector<module_ref>& mods) const
Paul Fultz II's avatar
Paul Fultz II committed
98
    {
99
        module_ref mod = mods[0];
100
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
101
102
103
104
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
105

106
        auto type = mod->get_output_shapes().front().type();
107
108
109
        std::unordered_map<instruction_ref, shape> ins_shapes;
        for(auto ins : iterator_for(*mod))
        {
110
            if(ins->name() == "@literal" or ins->name() == "@param")
111
112
113
114
115
116
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
117
                return ins_shapes[ins->inputs().at(0)].with_type(type);
118
119
120
121
122
123
124
125
126
127
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
128
129
    }
};
130
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
131
132

namespace {
133
134
135
136
137
138

std::tuple<instruction_ref, std::vector<operation>>
get_fusable_input_op_stream(instruction_ref lower_input)
{
    instruction_ref upper_input = lower_input;
    std::vector<operation> op_stream;
139
140
141
142
143
144
145
146
147
148
    while(contains({"slice",
                    "transpose",
                    "multibroadcast",
                    "broadcast",
                    "contiguous",
                    "reshape",
                    "squeeze",
                    "flatten",
                    "unsqueeze"},
                   upper_input->name()))
149
150
151
152
153
154
155
156
157
158
159
160
    {
        operation op = upper_input->get_operator();
        if(contains({"squeeze", "flatten", "unsqueeze"}, upper_input->name()))
        {
            op = migraphx::make_op("reshape", {{"dims", upper_input->get_shape().lens()}});
        }
        op_stream.push_back(op);
        upper_input = upper_input->inputs().at(0);
    }
    return {upper_input, op_stream};
}

161
std::tuple<instruction_ref, std::vector<instruction_ref>>
162
163
164
fuse_input_ops_and_gemm_based_op(module_ref mm,
                                 const std::vector<instruction_ref>& gemm_based_op_inputs,
                                 const operation& gemm_based_op)
165
166
167
168
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
169
    for(instruction_ref input : gemm_based_op_inputs)
170
    {
171
172
        auto [upper_input, op_stream] = get_fusable_input_op_stream(input);
        top_inputs.push_back(upper_input);
173
        instruction_ref prev_input =
174
            mm->add_parameter("y" + std::to_string(input_cnt++), upper_input->get_shape());
175
176
177
178
179
180
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
181
    instruction_ref new_gemm_based_op = mm->add_instruction(gemm_based_op, imm_inputs);
182
183
    return {new_gemm_based_op, top_inputs};
}
184

185
enum class mlir_mode
186
{
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    all,
    fast,
    int8,
    none
};

auto is_mlir_dot(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "dot" and ins->name() != "quant_dot")
            return false;
        if(mode != mlir_mode::fast)
            return true;
        auto a = ins->inputs().front()->get_shape();
        auto b = ins->inputs().back()->get_shape();
        // auto m = a.lens()[a.lens().size() - 2];
        // auto n = b.lens().back();
        auto k = a.lens().back();
        // Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
        // to avoid poor-performing GEMM kernels from MLIR
        // To-do: Investigate a more precise strategy
        return k <= 2048;
    });
}

auto is_mlir_conv(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "convolution" and ins->name() != "quant_convolution")
            return false;
        value v    = ins->get_operator().to_value();
        auto group = v.at("group").to<int>();
        if(group != 1)
            return false;
        // Avoid MLIR assertion: Index < Length && "Invalid index!"
        if(ins->get_shape().lens().size() != 4)
            return false;
        if(ins->get_shape().type() == shape::int8_type)
            return true;
        if(mode == mlir_mode::int8)
            return false;
        if(mode == mlir_mode::all)
            return true;
        auto w = ins->inputs().at(1)->get_shape();
        if(w.lens().size() != 4)
            return true;
        if(w.lens()[2] != w.lens()[3])
            return true;
        return (w.lens()[3] % 3) != 0;
    });
241
242
}

243
244
std::unordered_map<instruction_ref, instruction_ref>
create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape)
Paul Fultz II's avatar
Paul Fultz II committed
245
{
246
247
    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(*pm))
Paul Fultz II's avatar
Paul Fultz II committed
248
    {
249
        if(ins->name() != "@literal")
250
        {
251
            continue;
252
        }
253
254
255
256
257
        literal r               = ins->get_literal();
        instruction_ref literal = mm->add_literal(r);
        instruction_ref mbcast =
            mm->add_instruction(make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
        ins_map[ins] = mbcast;
258
    }
259
260
    return ins_map;
}
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
std::vector<instruction_ref>
fold_pointwise_mod(instruction_ref pm_ins,
                   module_ref parent_mod,
                   const std::unordered_map<instruction_ref, instruction_ref>& ins_map)
{
    auto* pm   = pm_ins->module_inputs().front();
    auto names = pm->get_parameter_names();
    std::sort(names.begin(), names.end());
    std::unordered_map<instruction_ref, instruction_ref> param_map =
        create_param_map_with_literals(parent_mod, pm, pm_ins->get_shape());
    std::transform(names.begin(),
                   names.end(),
                   pm_ins->inputs().begin(),
                   std::inserter(param_map, param_map.end()),
                   [&](auto name, auto input) {
                       if(ins_map.count(input))
                           return std::make_pair(pm->get_parameter(name), ins_map.at(input));
                       return std::make_pair(pm->get_parameter(name),
                                             parent_mod->add_parameter(name, input->get_shape()));
                   });
    return parent_mod->insert_instructions(parent_mod->end(), pm, param_map);
}

// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i)
{
    using type_t                                      = shape::type_t;
    const auto& name                                  = i.name();
    const auto result_type                            = i.get_shape().type();
    const std::initializer_list<type_t> allowed_types = {type_t::float_type,
                                                         type_t::half_type,
                                                         type_t::int8_type,
                                                         type_t::int32_type,
                                                         type_t::bool_type};
    // Preliminary type check.
    if(not contains(allowed_types, result_type))
300
301
302
    {
        return false;
    }
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
    const std::initializer_list<std::string> no_bool_ops  = {
        "convolution",
        "quant_convolution",
        "dot",
        "quant_dot",
        "add",
        "clip",
        "relu",
        "sub",
        "mul",
        "div",
        "pow",
        "where",
        "quantizelinear",
        "dequantizelinear",
        "abs",
        "neg",
    };
    const std::initializer_list<std::string> fp_only_ops = {
        "ceil",
        "erf",
        "exp",
        "floor",
        "log",
        "recip",
        "rsqrt",
        "sigmoid",
        "softmax",
        "tanh",
    };
    bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
    if(contains(any_type_ops, name))
        return true;
    if(result_type != type_t::bool_type and contains(no_bool_ops, name))
        return true;
    if(is_float and contains(fp_only_ops, name))
        return true;
    // Only conversions between floating types are known to be unambigiously
    // supported.
    if(is_float and name == "convert")
    {
        return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
            return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
        });
    }
    return false;
}

MIGRAPHX_PRED_MATCHER(mlir_pointwise, instruction_ref ins)
{
    if(ins->name() != "pointwise")
        return false;
    auto* pm = ins->module_inputs().front();
    return std::all_of(pm->begin(), pm->end(), [&](const auto& i) {
        return is_pointwise_op_supported_by_mlir(i);
    });
}

struct find_mlir_fused_ops
{
    mlir_mode conv_mode = mlir_mode::none;
    mlir_mode dot_mode  = mlir_mode::none;
    auto matcher() const
    {
        auto dot_or_conv = match::skip(match::name("contiguous"))(
            match::any_of(is_mlir_dot(dot_mode), is_mlir_conv(conv_mode)).bind("gemm_based_op"));
        return mlir_pointwise()(match::any_of[match::inputs()](dot_or_conv.bind("x")));
    }
372

Paul Fultz II's avatar
Paul Fultz II committed
373
374
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
375
376
377
378
379
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
Paul Fultz II's avatar
Paul Fultz II committed
380
381
382
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
383
384
385
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(
            mm, gemm_based_op->inputs(), gemm_based_op->get_operator());
        mm->add_return(fold_pointwise_mod(ins, mm, {{x_ins, anchor_op}}));
Paul Fultz II's avatar
Paul Fultz II committed
386
387
388
389
390

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
391
                     [&](auto input) { return input != gemm_based_op; });
392
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
393
        mpm.get_module().replace_instruction(
394
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
395
396
    }
};
397

398
template <auto Matcher>
399
struct find_mlir_standalone_op
400
{
401
402
    mlir_mode mode = mlir_mode::none;
    auto matcher() const { return Matcher(mode); }
403

404
405
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
406
407
        auto gemm_based_op = r.result;
        //
408
        // enable only for fp32/fp16/i8 types
409
        if(std::any_of(gemm_based_op->inputs().begin(), gemm_based_op->inputs().end(), [&](auto i) {
410
411
412
413
414
415
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           }))
            return;
        static size_t counter = 0;
416
        module_ref mm =
417
            mpm.create_module("mlir_" + gemm_based_op->name() + std::to_string(counter++));
418
        mm->set_bypass();
419
420
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(
            mm, gemm_based_op->inputs(), gemm_based_op->get_operator());
421
422
        mm->add_return({anchor_op});
        mpm.get_module().replace_instruction(
423
            gemm_based_op, mlir_op{gemm_based_op->get_operator()}, top_inputs, {mm});
424
425
426
    }
};

427
428
using find_mlir_standalone_convolution_op = find_mlir_standalone_op<&is_mlir_conv>;
using find_mlir_standalone_dot_op         = find_mlir_standalone_op<&is_mlir_dot>;
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
struct find_mlir_standalone_attention_op
{
    auto matcher() const
    {
        return match::name("gpu::pre_gemm_softmax_gemm").bind("gemm_softmax_gemm");
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        static size_t counter  = 0;
        module_ref mm          = mpm.create_module("mlir_" + std::to_string(counter++));
        auto gemm_softmax_gemm = r.instructions["gemm_softmax_gemm"];
        std::vector<instruction_ref> inputs;
        mm->set_bypass();
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        auto gemm0_inputs = gemm_softmax_gemm->inputs();
        gemm0_inputs.pop_back();
        auto [gemm0, top_gemm0_inputs] =
            fuse_input_ops_and_gemm_based_op(mm, gemm0_inputs, make_op("dot"));
        inputs.insert(inputs.begin(), top_gemm0_inputs.begin(), top_gemm0_inputs.end());
        // handle scale
        auto v = gemm_softmax_gemm->get_operator().to_value();
        assert(v.contains("scale"));
        auto scale     = v.at("scale").to<float>();
        auto scale_lit = mm->add_literal(literal{shape{gemm0->get_shape().type()}, {scale}});
        instruction_ref scale_lit_mbcast = mm->add_instruction(
            make_op("multibroadcast", {{"out_lens", gemm0->get_shape().lens()}}), scale_lit);
        auto scaled_gemm0 = mm->add_instruction(make_op("mul"), gemm0, scale_lit_mbcast);

        auto softmax = mm->add_instruction(
            make_op("softmax", {{"axis", gemm0->get_shape().lens().size() - 1}}), scaled_gemm0);
        auto [old_upper_v, upper_v_op_stream] =
            get_fusable_input_op_stream(gemm_softmax_gemm->inputs()[2]);
        instruction_ref new_upper_v = mm->add_parameter("z", old_upper_v->get_shape());
        for(const auto& op : reverse(upper_v_op_stream))
        {
            new_upper_v = mm->add_instruction(op, {new_upper_v});
        }
        inputs.push_back(old_upper_v);
        auto gemm1                 = mm->add_instruction(make_op("dot"), {softmax, new_upper_v});
        ins_map[gemm_softmax_gemm] = gemm1;
        auto ins_to_replace        = gemm1;
        auto ins_to_be_replaced    = gemm_softmax_gemm;
        if(r.instructions.find("trailing_pm") != r.instructions.end())
        {
            ins_to_replace = fold_pointwise_mod(r.instructions["trailing_pm"], mm, ins_map)[0];
            std::copy_if(r.instructions["trailing_pm"]->inputs().begin(),
                         r.instructions["trailing_pm"]->inputs().end(),
                         std::back_inserter(inputs),
                         [&](auto input) { return input != gemm_softmax_gemm; });
            ins_to_be_replaced = r.instructions["trailing_pm"];
        }
        mm->add_return({ins_to_replace});
        mpm.get_module().replace_instruction(
            ins_to_be_replaced, mlir_op{gemm1->get_operator()}, inputs, {mm});
    }
};

struct find_mlir_attention_fused_ops : public find_mlir_standalone_attention_op
490
{
491
492
493
494
495
496
497
498
499
    auto matcher() const
    {
        auto standalone_matcher = find_mlir_standalone_attention_op::matcher();
        return mlir_pointwise()(
            match::any_of[match::inputs()](standalone_matcher).bind("trailing_pm"));
        ;
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
500
501
} // namespace

502
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
503
504
505
506

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
507
508
    const auto& device_name = ctx == nullptr ? "" : ctx->get_current_device().get_gfx_name();
    const bool is_navi      = starts_with(device_name, "gfx110");
509

510
511
512
513
514
515
516
    auto get_mode = [&](std::string_view option, mlir_mode m1, mlir_mode m2 = mlir_mode::fast) {
        if(is_requested(option))
            return mlir_mode::all;
        if(is_navi)
            return mlir_mode::all;
        return std::max(m1, m2);
    };
517

518
519
520
    mlir_mode mode =
        (enabled(MIGRAPHX_ENABLE_EXTRA_MLIR{}) or enable_extra) ? mlir_mode::fast : mlir_mode::none;

521
522
523
524
525
526
527
    // Attention offloads; default disabled
    if(mlir_attention_enabled())
    {
        match::find_matches(mpm, find_mlir_attention_fused_ops{});
        match::find_matches(mpm, find_mlir_standalone_attention_op{});
    }

528
529
530
531
532
533
534
535
    match::find_matches(mpm,
                        find_mlir_fused_ops{.conv_mode = get_mode("fused", mlir_mode::fast),
                                            .dot_mode  = get_mode("fused", mode)});

    match::find_matches(
        mpm,
        find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::int8)},
        find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
Paul Fultz II's avatar
Paul Fultz II committed
536
537
538
539
540
541
542
543
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx