read_onnx.cpp 10.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
Paul's avatar
Paul committed
7
#include <unordered_map>
Paul's avatar
Paul committed
8
#include <functional>
Paul's avatar
Paul committed
9

Paul's avatar
Paul committed
10
#include <rtg/program.hpp>
Paul's avatar
Paul committed
11
#include <rtg/operators.hpp>
Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
20
21

struct unknown
{
    std::string op;
    std::string name() const
    {
        return "unknown:"+op;
    }
    rtg::shape compute_shape(std::vector<rtg::shape> input) const
    {
Paul's avatar
Paul committed
22
23
        if(input.empty()) return {};
        else return input.front();
Paul's avatar
Paul committed
24
25
26
27
28
29
    }
    rtg::argument compute(std::vector<rtg::argument> input) const
    {
        throw "not computable";
    }
};
Paul's avatar
Paul committed
30

Paul's avatar
Paul committed
31
32
33
34
35
36
37
38
39
40
41
42
43
template<class C, class T>
bool contains(C&& c, T&& x)
{
    return c.find(x) != c.end();
}

template<class Range, class Iterator>
void copy(Range&& r, Iterator it)
{
    std::copy(r.begin(), r.end(), it);
}


Paul's avatar
Paul committed
44
struct onnx_parser 
Paul's avatar
Paul committed
45
{
Paul's avatar
Paul committed
46
47
48
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
    node_map nodes;
Paul's avatar
Paul committed
49
50
51
    std::unordered_map<std::string, rtg::instruction*> instructions;
    std::shared_ptr<rtg::program> prog = std::make_shared<rtg::program>();

Paul's avatar
Paul committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    std::unordered_map<std::string, std::function<rtg::instruction*(attribute_map, std::vector<rtg::instruction*>)>> ops;

    onnx_parser()
    {
        add_op("Conv", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
            return prog->add_instruction(op, args);
        });
        add_op("MaxPool", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
            return prog->add_instruction(op, args);
        });
        add_op("Relu", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            return prog->add_instruction(rtg::activation{"relu"}, args);
        });
Paul's avatar
Paul committed
92
93
94
95
96
97
98
99
100
        add_op("Reshape", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::reshape op;
            rtg::literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v)
            {
                copy(v, std::back_inserter(op.dims));
            });
            return prog->add_instruction(op, args);
        });
Paul's avatar
Paul committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        add_op("Constant", [this](attribute_map attributes, std::vector<rtg::instruction*>) {
            rtg::literal v = parse_value(attributes.at("value"));
            return prog->add_literal(v);
        });
    }

    template<class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is)) 
        {
            if(model.has_graph()) 
            {
                this->parse_graph(model.graph());
            }
        } 
        else 
        {
            throw std::runtime_error("Failed reading");
        }
    }

Paul's avatar
Paul committed
129
    void parse_graph(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
130
    {
Paul's avatar
Paul committed
131
132
133
134
135
        nodes = get_nodes(graph);
        for(auto&& input:graph.input())
        {
            std::string name = input.name();
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
136
137
            rtg::shape s = parse_type(input.type());
            instructions[name] = prog->add_parameter(name, s);
Paul's avatar
Paul committed
138
139
140
141
142
        }
        for(auto&& p:nodes)
        {
            this->parse_node(p.second.name());
        }
Paul's avatar
Paul committed
143
144
    }

Paul's avatar
Paul committed
145
    void parse_node(std::string name)
Paul's avatar
Paul committed
146
    {
Paul's avatar
Paul committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        if (instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<rtg::instruction*> args;
            for(auto&& input:node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = nodes.at(input).name();
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
164
165
166
167
168
169
170
171
            if (ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog->add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
Paul's avatar
Paul committed
172
        }
Paul's avatar
Paul committed
173
174
    }

Paul's avatar
Paul committed
175
    static attribute_map get_attributes(const onnx::NodeProto& node)
Paul's avatar
Paul committed
176
177
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
Paul's avatar
Paul committed
178
179
        for(auto&& attr:node.attribute())
        {
Paul's avatar
Paul committed
180
181
182
183
184
            result[attr.name()] = attr;
        }
        return result;
    }

Paul's avatar
Paul committed
185
    static node_map get_nodes(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node:graph.node())
        {
            result[node.name()] = node;
            for(auto&& output:node.output())
            {
                result[output] = node;
            }

        }
        return result;
    }

Paul's avatar
Paul committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    static rtg::literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
            case onnx::AttributeProto::UNDEFINED: return {};
            case onnx::AttributeProto::FLOAT: return rtg::literal{attr.f()};
            case onnx::AttributeProto::INT: return rtg::literal{attr.i()};
            case onnx::AttributeProto::STRING: return {};
            case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
            case onnx::AttributeProto::GRAPH: return {};
            case onnx::AttributeProto::FLOATS: return rtg::literal{rtg::shape::float_type, attr.floats().begin(), attr.floats().end()};
            case onnx::AttributeProto::INTS: return rtg::literal{rtg::shape::int32_type, attr.ints().begin(), attr.ints().end()};;
            case onnx::AttributeProto::STRINGS: return {};
            case onnx::AttributeProto::TENSORS: return {};
            case onnx::AttributeProto::GRAPHS: return {};
        }
    }

    static rtg::literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return rtg::literal{{rtg::shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::UINT16: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::INT16: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::INT32: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::INT64: return rtg::literal{{rtg::shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return rtg::literal{{rtg::shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
Paul's avatar
Paul committed
239
        }
Paul's avatar
Paul committed
240
    }
Paul's avatar
Paul committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

    static rtg::shape parse_type(const onnx::TypeProto& t)
    {
        rtg::shape::type_t shape_type;
        switch(t.tensor_type().elem_type())
        {
            case onnx::TensorProto::UNDEFINED: break; //throw std::runtime_error("Unsupported type UNDEFINED");
            case onnx::TensorProto::FLOAT: shape_type = rtg::shape::float_type;
            case onnx::TensorProto::UINT8: break; //throw std::runtime_error("Unsupported type UINT8");
            case onnx::TensorProto::INT8: shape_type = rtg::shape::int8_type;
            case onnx::TensorProto::UINT16: shape_type = rtg::shape::uint16_type;
            case onnx::TensorProto::INT16: shape_type = rtg::shape::int16_type;
            case onnx::TensorProto::INT32: shape_type = rtg::shape::int32_type;
            case onnx::TensorProto::INT64: shape_type = rtg::shape::int64_type;
            case onnx::TensorProto::STRING: break; //throw std::runtime_error("Unsupported type STRING");
            case onnx::TensorProto::BOOL: break; //throw std::runtime_error("Unsupported type BOOL");
            case onnx::TensorProto::FLOAT16: break; //throw std::runtime_error("Unsupported type FLOAT16");
            case onnx::TensorProto::DOUBLE: shape_type = rtg::shape::double_type;
            case onnx::TensorProto::UINT32: shape_type = rtg::shape::uint32_type;
            case onnx::TensorProto::UINT64: shape_type = rtg::shape::uint64_type;
            case onnx::TensorProto::COMPLEX64: break; //throw std::runtime_error("Unsupported type COMPLEX64");
            case onnx::TensorProto::COMPLEX128: break; //throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
        for(auto&& d:t.tensor_type().shape().dim())
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};
Paul's avatar
Paul committed
273

Paul's avatar
Paul committed
274
275
276
277
278
279
int main(int argc, char const *argv[])
{
    if(argc > 1)
    {
        std::string file = argv[1];
        std::fstream input(file.c_str(), std::ios::in | std::ios::binary);
Paul's avatar
Paul committed
280
281
282
283
284
285
286
287
288
289
290
        onnx_parser parser;
        try
        {
            parser.parse_from(input);
        }
        catch(...)
        {
            if(parser.prog) parser.prog->print();
            throw;
        }
        parser.prog->print();
Paul's avatar
Paul committed
291
292
    }
}