read_onnx.cpp 10.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
Paul's avatar
Paul committed
7
#include <unordered_map>
Paul's avatar
Paul committed
8
#include <functional>
Paul's avatar
Paul committed
9

Paul's avatar
Paul committed
10
#include <rtg/program.hpp>
Paul's avatar
Paul committed
11
#include <rtg/operators.hpp>
Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
20
21

struct unknown
{
    std::string op;
    std::string name() const
    {
        return "unknown:"+op;
    }
    rtg::shape compute_shape(std::vector<rtg::shape> input) const
    {
Paul's avatar
Paul committed
22
23
        if(input.empty()) return {};
        else return input.front();
Paul's avatar
Paul committed
24
25
26
27
28
29
    }
    rtg::argument compute(std::vector<rtg::argument> input) const
    {
        throw "not computable";
    }
};
Paul's avatar
Paul committed
30

Paul's avatar
Paul committed
31
32
33
34
35
36
37
38
39
40
41
42
43
template<class C, class T>
bool contains(C&& c, T&& x)
{
    return c.find(x) != c.end();
}

template<class Range, class Iterator>
void copy(Range&& r, Iterator it)
{
    std::copy(r.begin(), r.end(), it);
}


Paul's avatar
Paul committed
44
struct onnx_parser 
Paul's avatar
Paul committed
45
{
Paul's avatar
Paul committed
46
47
48
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
    node_map nodes;
Paul's avatar
Paul committed
49
50
51
    std::unordered_map<std::string, rtg::instruction*> instructions;
    std::shared_ptr<rtg::program> prog = std::make_shared<rtg::program>();

Paul's avatar
Paul committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    std::unordered_map<std::string, std::function<rtg::instruction*(attribute_map, std::vector<rtg::instruction*>)>> ops;

    onnx_parser()
    {
        add_op("Conv", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::convolution op;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "dilations"))
            {
                copy(attributes["dilations"].ints(), op.dilation.begin());
            }
            return prog->add_instruction(op, args);
        });
        add_op("MaxPool", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            rtg::pooling op{"max"};
            // for(auto&& p:attributes) std::cout << p.first << std::endl;
            if(contains(attributes, "pads"))
            {
                copy(attributes["pads"].ints(), op.padding.begin());
            }
            if(contains(attributes, "strides"))
            {
                copy(attributes["strides"].ints(), op.stride.begin());
            }
            if(contains(attributes, "kernel_shape"))
            {
                copy(attributes["kernel_shape"].ints(), op.lengths.begin());
            }
            return prog->add_instruction(op, args);
        });
        add_op("Relu", [this](attribute_map attributes, std::vector<rtg::instruction*> args) {
            return prog->add_instruction(rtg::activation{"relu"}, args);
        });
        add_op("Constant", [this](attribute_map attributes, std::vector<rtg::instruction*>) {
            rtg::literal v = parse_value(attributes.at("value"));
            return prog->add_literal(v);
        });
    }

    template<class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is)) 
        {
            if(model.has_graph()) 
            {
                this->parse_graph(model.graph());
            }
        } 
        else 
        {
            throw std::runtime_error("Failed reading");
        }
    }

Paul's avatar
Paul committed
120
    void parse_graph(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
121
    {
Paul's avatar
Paul committed
122
123
124
125
126
        nodes = get_nodes(graph);
        for(auto&& input:graph.input())
        {
            std::string name = input.name();
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
127
128
            rtg::shape s = parse_type(input.type());
            instructions[name] = prog->add_parameter(name, s);
Paul's avatar
Paul committed
129
130
131
132
133
        }
        for(auto&& p:nodes)
        {
            this->parse_node(p.second.name());
        }
Paul's avatar
Paul committed
134
135
    }

Paul's avatar
Paul committed
136
    void parse_node(std::string name)
Paul's avatar
Paul committed
137
    {
Paul's avatar
Paul committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        if (instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<rtg::instruction*> args;
            for(auto&& input:node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = nodes.at(input).name();
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
155
156
157
158
159
160
161
162
            if (ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog->add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
Paul's avatar
Paul committed
163
        }
Paul's avatar
Paul committed
164
165
    }

Paul's avatar
Paul committed
166
    static attribute_map get_attributes(const onnx::NodeProto& node)
Paul's avatar
Paul committed
167
168
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
Paul's avatar
Paul committed
169
170
        for(auto&& attr:node.attribute())
        {
Paul's avatar
Paul committed
171
172
173
174
175
            result[attr.name()] = attr;
        }
        return result;
    }

Paul's avatar
Paul committed
176
    static node_map get_nodes(const onnx::GraphProto& graph)
Paul's avatar
Paul committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node:graph.node())
        {
            result[node.name()] = node;
            for(auto&& output:node.output())
            {
                result[output] = node;
            }

        }
        return result;
    }

Paul's avatar
Paul committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    static rtg::literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
            case onnx::AttributeProto::UNDEFINED: return {};
            case onnx::AttributeProto::FLOAT: return rtg::literal{attr.f()};
            case onnx::AttributeProto::INT: return rtg::literal{attr.i()};
            case onnx::AttributeProto::STRING: return {};
            case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
            case onnx::AttributeProto::GRAPH: return {};
            case onnx::AttributeProto::FLOATS: return rtg::literal{rtg::shape::float_type, attr.floats().begin(), attr.floats().end()};
            case onnx::AttributeProto::INTS: return rtg::literal{rtg::shape::int32_type, attr.ints().begin(), attr.ints().end()};;
            case onnx::AttributeProto::STRINGS: return {};
            case onnx::AttributeProto::TENSORS: return {};
            case onnx::AttributeProto::GRAPHS: return {};
        }
    }

    static rtg::literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
        switch(t.data_type())
        {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return rtg::literal{{rtg::shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::UINT16: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::INT16: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::INT32: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::INT64: return rtg::literal{{rtg::shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return rtg::literal{{rtg::shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return rtg::literal{{rtg::shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
Paul's avatar
Paul committed
230
        }
Paul's avatar
Paul committed
231
    }
Paul's avatar
Paul committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

    static rtg::shape parse_type(const onnx::TypeProto& t)
    {
        rtg::shape::type_t shape_type;
        switch(t.tensor_type().elem_type())
        {
            case onnx::TensorProto::UNDEFINED: break; //throw std::runtime_error("Unsupported type UNDEFINED");
            case onnx::TensorProto::FLOAT: shape_type = rtg::shape::float_type;
            case onnx::TensorProto::UINT8: break; //throw std::runtime_error("Unsupported type UINT8");
            case onnx::TensorProto::INT8: shape_type = rtg::shape::int8_type;
            case onnx::TensorProto::UINT16: shape_type = rtg::shape::uint16_type;
            case onnx::TensorProto::INT16: shape_type = rtg::shape::int16_type;
            case onnx::TensorProto::INT32: shape_type = rtg::shape::int32_type;
            case onnx::TensorProto::INT64: shape_type = rtg::shape::int64_type;
            case onnx::TensorProto::STRING: break; //throw std::runtime_error("Unsupported type STRING");
            case onnx::TensorProto::BOOL: break; //throw std::runtime_error("Unsupported type BOOL");
            case onnx::TensorProto::FLOAT16: break; //throw std::runtime_error("Unsupported type FLOAT16");
            case onnx::TensorProto::DOUBLE: shape_type = rtg::shape::double_type;
            case onnx::TensorProto::UINT32: shape_type = rtg::shape::uint32_type;
            case onnx::TensorProto::UINT64: shape_type = rtg::shape::uint64_type;
            case onnx::TensorProto::COMPLEX64: break; //throw std::runtime_error("Unsupported type COMPLEX64");
            case onnx::TensorProto::COMPLEX128: break; //throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
        for(auto&& d:t.tensor_type().shape().dim())
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};
Paul's avatar
Paul committed
264

Paul's avatar
Paul committed
265
266
267
268
269
270
int main(int argc, char const *argv[])
{
    if(argc > 1)
    {
        std::string file = argv[1];
        std::fstream input(file.c_str(), std::ios::in | std::ios::binary);
Paul's avatar
Paul committed
271
272
273
274
275
276
277
278
279
280
281
        onnx_parser parser;
        try
        {
            parser.parse_from(input);
        }
        catch(...)
        {
            if(parser.prog) parser.prog->print();
            throw;
        }
        parser.prog->print();
Paul's avatar
Paul committed
282
283
    }
}