fuse_mlir.cpp 19.9 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_EXTRA_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MLIR);
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);
53

54
55
56
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
57
58
    const bool mlir_disabled = enabled(MIGRAPHX_DISABLE_MLIR{});
    return not mlir_disabled;
59
60
61
62
63
#else
    return false;
#endif
}

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
static bool is_requested(std::string_view option, bool fallback = false)
{
    auto string_value = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
    if(string_value.empty())
        return fallback;
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}

bool mlir_attention_enabled()
{
#ifdef MIGRAPHX_MLIR
    if(not mlir_enabled())
        return false;
    return is_requested("attention");
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
84
#ifdef MIGRAPHX_MLIR
85
86

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
87
{
88
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
89
90
91
92
93
94
95
96
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

97
    shape compute_shape(const std::vector<shape>& inputs, const std::vector<module_ref>& mods) const
Paul Fultz II's avatar
Paul Fultz II committed
98
    {
99
        module_ref mod = mods[0];
100
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
101
102
103
104
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
105

106
        auto type = mod->get_output_shapes().front().type();
107
108
109
        std::unordered_map<instruction_ref, shape> ins_shapes;
        for(auto ins : iterator_for(*mod))
        {
110
            if(ins->name() == "@literal" or ins->name() == "@param")
111
112
113
114
115
116
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
117
118
119
120
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
121
122
123
124
125
126
127
128
129
130
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
131
132
    }
};
133
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
134
135

namespace {
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

std::tuple<instruction_ref, std::vector<operation>>
get_fusable_input_op_stream(instruction_ref lower_input)
{
    instruction_ref upper_input = lower_input;
    std::vector<operation> op_stream;
    while(
        contains({"slice", "transpose", "contiguous", "reshape", "squeeze", "flatten", "unsqueeze"},
                 upper_input->name()))
    {
        operation op = upper_input->get_operator();
        if(contains({"squeeze", "flatten", "unsqueeze"}, upper_input->name()))
        {
            op = migraphx::make_op("reshape", {{"dims", upper_input->get_shape().lens()}});
        }
        op_stream.push_back(op);
        upper_input = upper_input->inputs().at(0);
    }
    return {upper_input, op_stream};
}

157
std::tuple<instruction_ref, std::vector<instruction_ref>>
158
159
160
fuse_input_ops_and_gemm_based_op(module_ref mm,
                                 const std::vector<instruction_ref>& gemm_based_op_inputs,
                                 const operation& gemm_based_op)
161
162
163
164
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
165
    for(instruction_ref input : gemm_based_op_inputs)
166
    {
167
168
        auto [upper_input, op_stream] = get_fusable_input_op_stream(input);
        top_inputs.push_back(upper_input);
169
        instruction_ref prev_input =
170
            mm->add_parameter("y" + std::to_string(input_cnt++), upper_input->get_shape());
171
172
173
174
175
176
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
177
    instruction_ref new_gemm_based_op = mm->add_instruction(gemm_based_op, imm_inputs);
178
179
    return {new_gemm_based_op, top_inputs};
}
180

181
enum class mlir_mode
182
{
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    all,
    fast,
    int8,
    none
};

auto is_mlir_dot(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "dot" and ins->name() != "quant_dot")
            return false;
        if(mode != mlir_mode::fast)
            return true;
        auto a = ins->inputs().front()->get_shape();
        auto b = ins->inputs().back()->get_shape();
        // auto m = a.lens()[a.lens().size() - 2];
        // auto n = b.lens().back();
        auto k = a.lens().back();
        // Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
        // to avoid poor-performing GEMM kernels from MLIR
        // To-do: Investigate a more precise strategy
        return k <= 2048;
    });
}

auto is_mlir_conv(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "convolution" and ins->name() != "quant_convolution")
            return false;
        value v    = ins->get_operator().to_value();
        auto group = v.at("group").to<int>();
        if(group != 1)
            return false;
        // Avoid MLIR assertion: Index < Length && "Invalid index!"
        if(ins->get_shape().lens().size() != 4)
            return false;
Umang Yadav's avatar
Umang Yadav committed
224
225
        if(ins->get_shape().type() == shape::fp8e4m3fnuz_type)
            return true;
Umang Yadav's avatar
Umang Yadav committed
226
227
        if(ins->get_shape().type() == shape::int8_type)
            return true;
228
229
230
231
232
233
234
235
236
237
238
        if(mode == mlir_mode::int8)
            return false;
        if(mode == mlir_mode::all)
            return true;
        auto w = ins->inputs().at(1)->get_shape();
        if(w.lens().size() != 4)
            return true;
        if(w.lens()[2] != w.lens()[3])
            return true;
        return (w.lens()[3] % 3) != 0;
    });
239
240
}

241
242
std::unordered_map<instruction_ref, instruction_ref>
create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape)
Paul Fultz II's avatar
Paul Fultz II committed
243
{
244
245
    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(*pm))
Paul Fultz II's avatar
Paul Fultz II committed
246
    {
247
        if(ins->name() != "@literal")
248
        {
249
            continue;
250
        }
251
252
253
254
255
        literal r               = ins->get_literal();
        instruction_ref literal = mm->add_literal(r);
        instruction_ref mbcast =
            mm->add_instruction(make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
        ins_map[ins] = mbcast;
256
    }
257
258
    return ins_map;
}
259

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
std::vector<instruction_ref>
fold_pointwise_mod(instruction_ref pm_ins,
                   module_ref parent_mod,
                   const std::unordered_map<instruction_ref, instruction_ref>& ins_map)
{
    auto* pm   = pm_ins->module_inputs().front();
    auto names = pm->get_parameter_names();
    std::sort(names.begin(), names.end());
    std::unordered_map<instruction_ref, instruction_ref> param_map =
        create_param_map_with_literals(parent_mod, pm, pm_ins->get_shape());
    std::transform(names.begin(),
                   names.end(),
                   pm_ins->inputs().begin(),
                   std::inserter(param_map, param_map.end()),
                   [&](auto name, auto input) {
                       if(ins_map.count(input))
                           return std::make_pair(pm->get_parameter(name), ins_map.at(input));
                       return std::make_pair(pm->get_parameter(name),
                                             parent_mod->add_parameter(name, input->get_shape()));
                   });
    return parent_mod->insert_instructions(parent_mod->end(), pm, param_map);
}

// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i)
{
    using type_t                                      = shape::type_t;
    const auto& name                                  = i.name();
    const auto result_type                            = i.get_shape().type();
    const std::initializer_list<type_t> allowed_types = {type_t::float_type,
                                                         type_t::half_type,
Umang Yadav's avatar
Umang Yadav committed
293
                                                         type_t::fp8e4m3fnuz_type,
294
295
296
297
298
                                                         type_t::int8_type,
                                                         type_t::int32_type,
                                                         type_t::bool_type};
    // Preliminary type check.
    if(not contains(allowed_types, result_type))
299
300
301
    {
        return false;
    }
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
    const std::initializer_list<std::string> no_bool_ops  = {
        "convolution",
        "quant_convolution",
        "dot",
        "quant_dot",
        "add",
        "clip",
        "relu",
        "sub",
        "mul",
        "div",
        "pow",
        "where",
        "quantizelinear",
        "dequantizelinear",
        "abs",
        "neg",
    };
    const std::initializer_list<std::string> fp_only_ops = {
        "ceil",
        "erf",
        "exp",
        "floor",
        "log",
        "recip",
        "rsqrt",
        "sigmoid",
        "softmax",
        "tanh",
    };
Umang Yadav's avatar
Umang Yadav committed
333
    bool is_float = contains({type_t::float_type, type_t::half_type, type_t::fp8e4m3fnuz_type}, result_type);
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    if(contains(any_type_ops, name))
        return true;
    if(result_type != type_t::bool_type and contains(no_bool_ops, name))
        return true;
    if(is_float and contains(fp_only_ops, name))
        return true;
    // Only conversions between floating types are known to be unambigiously
    // supported.
    if(is_float and name == "convert")
    {
        return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
            return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
        });
    }
    return false;
}

MIGRAPHX_PRED_MATCHER(mlir_pointwise, instruction_ref ins)
{
    if(ins->name() != "pointwise")
        return false;
    auto* pm = ins->module_inputs().front();
    return std::all_of(pm->begin(), pm->end(), [&](const auto& i) {
        return is_pointwise_op_supported_by_mlir(i);
    });
}

struct find_mlir_fused_ops
{
    mlir_mode conv_mode = mlir_mode::none;
    mlir_mode dot_mode  = mlir_mode::none;
    auto matcher() const
    {
        auto dot_or_conv = match::skip(match::name("contiguous"))(
            match::any_of(is_mlir_dot(dot_mode), is_mlir_conv(conv_mode)).bind("gemm_based_op"));
        return mlir_pointwise()(match::any_of[match::inputs()](dot_or_conv.bind("x")));
    }
371

Paul Fultz II's avatar
Paul Fultz II committed
372
373
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
374
375
376
377
378
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
Paul Fultz II's avatar
Paul Fultz II committed
379
380
381
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
382
383
384
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(
            mm, gemm_based_op->inputs(), gemm_based_op->get_operator());
        mm->add_return(fold_pointwise_mod(ins, mm, {{x_ins, anchor_op}}));
Paul Fultz II's avatar
Paul Fultz II committed
385
386
387
388
389

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
390
                     [&](auto input) { return input != gemm_based_op; });
391
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
392
        mpm.get_module().replace_instruction(
393
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
394
395
    }
};
396

397
template <auto Matcher>
398
struct find_mlir_standalone_op
399
{
400
401
    mlir_mode mode = mlir_mode::none;
    auto matcher() const { return Matcher(mode); }
402

403
404
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
405
406
        auto gemm_based_op = r.result;
        //
407
        // enable only for fp32/fp16/i8 types
408
        if(std::any_of(gemm_based_op->inputs().begin(), gemm_based_op->inputs().end(), [&](auto i) {
409
               return not contains(
Umang Yadav's avatar
Umang Yadav committed
410
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type, shape::type_t::fp8e4m3fnuz_type},
411
412
413
414
                   i->get_shape().type());
           }))
            return;
        static size_t counter = 0;
415
        module_ref mm =
416
            mpm.create_module("mlir_" + gemm_based_op->name() + std::to_string(counter++));
417
        mm->set_bypass();
418
419
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(
            mm, gemm_based_op->inputs(), gemm_based_op->get_operator());
420
421
        mm->add_return({anchor_op});
        mpm.get_module().replace_instruction(
422
            gemm_based_op, mlir_op{gemm_based_op->get_operator()}, top_inputs, {mm});
423
424
425
    }
};

426
427
using find_mlir_standalone_convolution_op = find_mlir_standalone_op<&is_mlir_conv>;
using find_mlir_standalone_dot_op         = find_mlir_standalone_op<&is_mlir_dot>;
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
struct find_mlir_standalone_attention_op
{
    auto matcher() const
    {
        return match::name("gpu::pre_gemm_softmax_gemm").bind("gemm_softmax_gemm");
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        static size_t counter  = 0;
        module_ref mm          = mpm.create_module("mlir_" + std::to_string(counter++));
        auto gemm_softmax_gemm = r.instructions["gemm_softmax_gemm"];
        std::vector<instruction_ref> inputs;
        mm->set_bypass();
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        auto gemm0_inputs = gemm_softmax_gemm->inputs();
        gemm0_inputs.pop_back();
        auto [gemm0, top_gemm0_inputs] =
            fuse_input_ops_and_gemm_based_op(mm, gemm0_inputs, make_op("dot"));
        inputs.insert(inputs.begin(), top_gemm0_inputs.begin(), top_gemm0_inputs.end());
        // handle scale
        auto v = gemm_softmax_gemm->get_operator().to_value();
        assert(v.contains("scale"));
        auto scale     = v.at("scale").to<float>();
        auto scale_lit = mm->add_literal(literal{shape{gemm0->get_shape().type()}, {scale}});
        instruction_ref scale_lit_mbcast = mm->add_instruction(
            make_op("multibroadcast", {{"out_lens", gemm0->get_shape().lens()}}), scale_lit);
        auto scaled_gemm0 = mm->add_instruction(make_op("mul"), gemm0, scale_lit_mbcast);

        auto softmax = mm->add_instruction(
            make_op("softmax", {{"axis", gemm0->get_shape().lens().size() - 1}}), scaled_gemm0);
        auto [old_upper_v, upper_v_op_stream] =
            get_fusable_input_op_stream(gemm_softmax_gemm->inputs()[2]);
        instruction_ref new_upper_v = mm->add_parameter("z", old_upper_v->get_shape());
        for(const auto& op : reverse(upper_v_op_stream))
        {
            new_upper_v = mm->add_instruction(op, {new_upper_v});
        }
        inputs.push_back(old_upper_v);
        auto gemm1                 = mm->add_instruction(make_op("dot"), {softmax, new_upper_v});
        ins_map[gemm_softmax_gemm] = gemm1;
        auto ins_to_replace        = gemm1;
        auto ins_to_be_replaced    = gemm_softmax_gemm;
        if(r.instructions.find("trailing_pm") != r.instructions.end())
        {
            ins_to_replace = fold_pointwise_mod(r.instructions["trailing_pm"], mm, ins_map)[0];
            std::copy_if(r.instructions["trailing_pm"]->inputs().begin(),
                         r.instructions["trailing_pm"]->inputs().end(),
                         std::back_inserter(inputs),
                         [&](auto input) { return input != gemm_softmax_gemm; });
            ins_to_be_replaced = r.instructions["trailing_pm"];
        }
        mm->add_return({ins_to_replace});
        mpm.get_module().replace_instruction(
            ins_to_be_replaced, mlir_op{gemm1->get_operator()}, inputs, {mm});
    }
};

struct find_mlir_attention_fused_ops : public find_mlir_standalone_attention_op
489
{
490
491
492
493
494
495
496
497
498
    auto matcher() const
    {
        auto standalone_matcher = find_mlir_standalone_attention_op::matcher();
        return mlir_pointwise()(
            match::any_of[match::inputs()](standalone_matcher).bind("trailing_pm"));
        ;
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
499
500
} // namespace

501
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
502
503
504
505

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
506
507
    const auto& device_name = ctx == nullptr ? "" : ctx->get_current_device().get_gfx_name();
    const bool is_navi      = starts_with(device_name, "gfx110");
508

509
510
511
512
513
514
515
    auto get_mode = [&](std::string_view option, mlir_mode m1, mlir_mode m2 = mlir_mode::fast) {
        if(is_requested(option))
            return mlir_mode::all;
        if(is_navi)
            return mlir_mode::all;
        return std::max(m1, m2);
    };
516

517
518
519
    mlir_mode mode =
        (enabled(MIGRAPHX_ENABLE_EXTRA_MLIR{}) or enable_extra) ? mlir_mode::fast : mlir_mode::none;

520
521
522
523
524
525
526
    // Attention offloads; default disabled
    if(mlir_attention_enabled())
    {
        match::find_matches(mpm, find_mlir_attention_fused_ops{});
        match::find_matches(mpm, find_mlir_standalone_attention_op{});
    }

527
528
529
530
531
532
533
534
    match::find_matches(mpm,
                        find_mlir_fused_ops{.conv_mode = get_mode("fused", mlir_mode::fast),
                                            .dot_mode  = get_mode("fused", mode)});

    match::find_matches(
        mpm,
        find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::int8)},
        find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
Paul Fultz II's avatar
Paul Fultz II committed
535
536
537
538
539
540
541
542
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx