logsoftmax.cpp 5.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/logsoftmax.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/hip.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

14
15
16
void logsoftmax(hipStream_t stream,
                    const argument& result,
                    const argument& arg,
Shucai Xiao's avatar
Shucai Xiao committed
17
                    int axis)
18
19
{

20
    auto lens        = result.get_shape().lens();
Shucai Xiao's avatar
Shucai Xiao committed
21
22
23
    auto n_dims      = lens[axis];
    auto batch_lens  = lens;
    batch_lens[axis] = 1;
24
    migraphx::shape batch_shape{result.get_shape().type(), batch_lens};
25

26
    visit_all(result, arg)([&](auto output, auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
27
28
        const auto* input_ptr = device_cast(input.data());
        auto* output_ptr      = device_cast(output.data());
29
30
        visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) {
            hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
31
            hip_tensor_descriptor<n_dim> desc_data(result.get_shape());
32

33
34
35
            // use one block for items in one batch.
            // opt 1, load all data to lds then use the same approach as
            // the current optimization
36
            const size_t max_block_size = 1024;
Shucai Xiao's avatar
Shucai Xiao committed
37
38
            size_t block_size           = 1;
            while(block_size < max_block_size and block_size < n_dim)
39
40
41
42
            {
                block_size *= 2;
            }

Shucai Xiao's avatar
Shucai Xiao committed
43
44
            launch(
                stream, batch_shape.elements() * block_size, block_size)([=](auto idx) __device__ {
45
46
47
                size_t thr_idx = idx.local;
                size_t blk_idx = idx.group;
                using type = device_type<std::remove_cv_t<typename decltype(output)::value_type>>;
48

49
50
                // all data can be loaded to the lds once, so all operations are
                // done in lds
51
                MIGRAPHX_DEVICE_SHARED type lds_data[max_block_size + 2];
52
                auto batch_idx = desc_batch.multi(blk_idx);
Shucai Xiao's avatar
Shucai Xiao committed
53
                auto data_idx  = batch_idx;
54
                // load data to lds and compute the batch max
55
                size_t item_num      = n_dims;
Shucai Xiao's avatar
Shucai Xiao committed
56
                size_t thread_num    = (n_dims + block_size - 1) / block_size * block_size;
57
                lds_data[block_size] = input_ptr[0];
58
                for(size_t i = thr_idx; i < thread_num; i += block_size)
59
                {
Shucai Xiao's avatar
Shucai Xiao committed
60
                    if(i < n_dims)
61
                    {
Shucai Xiao's avatar
Shucai Xiao committed
62
63
                        data_idx[axis]    = i;
                        lds_data[thr_idx] = input_ptr[desc_data.linear(data_idx)];
64
                    }
65
66
                    __syncthreads();

Shucai Xiao's avatar
Shucai Xiao committed
67
                    auto size   = (item_num > block_size) ? block_size : item_num;
68
                    auto stride = (size + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
69
                    while(true)
70
                    {
Shucai Xiao's avatar
Shucai Xiao committed
71
                        if(thr_idx + stride < size)
72
                        {
Shucai Xiao's avatar
Shucai Xiao committed
73
74
                            lds_data[thr_idx] = ::max(to_hip_type(lds_data[thr_idx]),
                                                      to_hip_type(lds_data[thr_idx + stride]));
75
                        }
76
                        __syncthreads();
Shucai Xiao's avatar
Shucai Xiao committed
77
                        size   = stride;
78
79
                        stride = (stride + 1) / 2;

Shucai Xiao's avatar
Shucai Xiao committed
80
81
                        if(size == 1)
                            break;
82
83
                    }

Shucai Xiao's avatar
Shucai Xiao committed
84
                    if(thr_idx == 0)
85
                    {
Shucai Xiao's avatar
Shucai Xiao committed
86
87
88
                        lds_data[block_size] = (lds_data[0] < lds_data[block_size])
                                                   ? lds_data[block_size]
                                                   : lds_data[0];
89
90
                    }
                    __syncthreads();
91
92

                    item_num -= block_size;
93
                }
94

95
                const size_t block_size1 = block_size + 1;
Shucai Xiao's avatar
Shucai Xiao committed
96
                lds_data[block_size1]    = 0;
97
98
                item_num                 = n_dims;
                for(size_t i = thr_idx; i < thread_num; i += block_size)
99
                {
Shucai Xiao's avatar
Shucai Xiao committed
100
                    if(i < n_dims)
101
102
                    {
                        data_idx[axis] = i;
Shucai Xiao's avatar
Shucai Xiao committed
103
104
105
                        lds_data[thr_idx] =
                            input_ptr[desc_data.linear(data_idx)] - lds_data[block_size];
                        lds_data[thr_idx] = ::exp(to_hip_type(lds_data[thr_idx]));
106
                    }
Shucai Xiao's avatar
Shucai Xiao committed
107

108
109
                    __syncthreads();

Shucai Xiao's avatar
Shucai Xiao committed
110
                    auto size   = (item_num > block_size) ? block_size : item_num;
111
                    auto stride = (size + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
112
                    while(true)
113
                    {
Shucai Xiao's avatar
Shucai Xiao committed
114
                        if(thr_idx + stride < size)
115
                        {
116
                            lds_data[thr_idx] += lds_data[thr_idx + stride];
117
                        }
118
                        __syncthreads();
Shucai Xiao's avatar
Shucai Xiao committed
119
                        size   = stride;
120
                        stride = (stride + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
121
122
                        if(size == 1)
                            break;
123
124
                    }

Shucai Xiao's avatar
Shucai Xiao committed
125
                    if(thr_idx == 0)
126
127
                    {
                        lds_data[block_size1] += lds_data[0];
128
129
                    }
                    __syncthreads();
130
131

                    item_num -= block_size;
132
133
                }

Shucai Xiao's avatar
Shucai Xiao committed
134
135
                auto log_batch_sum =
                    ::log(to_hip_type(lds_data[block_size1])) + lds_data[block_size];
136
                for(size_t i = thr_idx; i < n_dims; i += block_size)
137
                {
Shucai Xiao's avatar
Shucai Xiao committed
138
139
                    data_idx[axis]    = i;
                    size_t index      = desc_data.linear(data_idx);
140
                    output_ptr[index] = input_ptr[index] - log_batch_sum;
141
142
                }
            });
143
144
145
146
147
148
149
150
        });
    });
}

} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx