logsoftmax.cpp 5.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/logsoftmax.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/hip.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

argument logsoftmax(hipStream_t stream,
Shucai Xiao's avatar
Shucai Xiao committed
15
16
17
                    const migraphx::shape& output_shape,
                    std::vector<migraphx::argument> args,
                    int axis)
18
19
{

Shucai Xiao's avatar
Shucai Xiao committed
20
    auto lens         = output_shape.lens();
21
    auto n_dims = lens[axis];
Shucai Xiao's avatar
Shucai Xiao committed
22
23
    auto batch_lens   = lens;
    batch_lens[axis]  = 1;
24
    migraphx::shape batch_shape{output_shape.type(), batch_lens};
25
26

    visit_all(args.back(), args.front())([&](auto output, auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
27
28
        const auto* input_ptr = device_cast(input.data());
        auto* output_ptr      = device_cast(output.data());
29
30
31
        visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) {
            hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
            hip_tensor_descriptor<n_dim> desc_data(output_shape);
32

33
34
35
            // use one block for items in one batch.
            // opt 1, load all data to lds then use the same approach as
            // the current optimization
36
37
38
39
40
41
42
            const size_t max_block_size = 1024;
            size_t block_size = 1;
            while (block_size < max_block_size and block_size < n_dim)
            {
                block_size *= 2;
            }

Shucai Xiao's avatar
Shucai Xiao committed
43
44
            launch(
                stream, batch_shape.elements() * block_size, block_size)([=](auto idx) __device__ {
45
46
47
                size_t thr_idx = idx.local;
                size_t blk_idx = idx.group;
                using type = device_type<std::remove_cv_t<typename decltype(output)::value_type>>;
48

49
50
                // all data can be loaded to the lds once, so all operations are
                // done in lds
51
                MIGRAPHX_DEVICE_SHARED type lds_data[max_block_size + 2];
52
                auto batch_idx = desc_batch.multi(blk_idx);
Shucai Xiao's avatar
Shucai Xiao committed
53
                auto data_idx  = batch_idx;
54
                // load data to lds and compute the batch max
55
56
                size_t item_num      = n_dims;
                size_t thread_num = (n_dims + block_size - 1) / block_size * block_size;
57
                lds_data[block_size] = input_ptr[0];
58
                for(size_t i = thr_idx; i < thread_num; i += block_size)
59
                {
60
61
62
63
64
                    if (i < n_dims)
                    {
                        data_idx[axis] = i;
                        lds_data[thr_idx]    = input_ptr[desc_data.linear(data_idx)];
                    }
65
66
                    __syncthreads();

Shucai Xiao's avatar
Shucai Xiao committed
67
                    auto size   = (item_num > block_size) ? block_size : item_num;
68
                    auto stride = (size + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
69
                    while(true)
70
                    {
Shucai Xiao's avatar
Shucai Xiao committed
71
                        if(thr_idx + stride < size)
72
                        {
Shucai Xiao's avatar
Shucai Xiao committed
73
74
                            lds_data[thr_idx] = ::max(to_hip_type(lds_data[thr_idx]),
                                                      to_hip_type(lds_data[thr_idx + stride]));
75
                        }
76
                        __syncthreads();
Shucai Xiao's avatar
Shucai Xiao committed
77
                        size   = stride;
78
79
                        stride = (stride + 1) / 2;

Shucai Xiao's avatar
Shucai Xiao committed
80
81
                        if(size == 1)
                            break;
82
83
                    }

Shucai Xiao's avatar
Shucai Xiao committed
84
                    if(thr_idx == 0)
85
                    {
Shucai Xiao's avatar
Shucai Xiao committed
86
87
88
                        lds_data[block_size] = (lds_data[0] < lds_data[block_size])
                                                   ? lds_data[block_size]
                                                   : lds_data[0];
89
90
                    }
                    __syncthreads();
91
92

                    item_num -= block_size;
93
                }
94

95
                const size_t block_size1 = block_size + 1;
Shucai Xiao's avatar
Shucai Xiao committed
96
                lds_data[block_size1]    = 0;
97
98
                item_num                 = n_dims;
                for(size_t i = thr_idx; i < thread_num; i += block_size)
99
                {
100
101
102
103
104
105
106
                    if (i < n_dims)
                    {
                        data_idx[axis] = i;
                        lds_data[thr_idx]    = input_ptr[desc_data.linear(data_idx)] - lds_data[block_size];
                        lds_data[thr_idx]    = ::exp(to_hip_type(lds_data[thr_idx]));
                    }
                    
107
108
                    __syncthreads();

Shucai Xiao's avatar
Shucai Xiao committed
109
                    auto size   = (item_num > block_size) ? block_size : item_num;
110
                    auto stride = (size + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
111
                    while(true)
112
                    {
Shucai Xiao's avatar
Shucai Xiao committed
113
                        if(thr_idx + stride < size)
114
                        {
115
                            lds_data[thr_idx] += lds_data[thr_idx + stride];
116
                        }
117
                        __syncthreads();
Shucai Xiao's avatar
Shucai Xiao committed
118
                        size   = stride;
119
                        stride = (stride + 1) / 2;
Shucai Xiao's avatar
Shucai Xiao committed
120
121
                        if(size == 1)
                            break;
122
123
                    }

Shucai Xiao's avatar
Shucai Xiao committed
124
                    if(thr_idx == 0)
125
126
                    {
                        lds_data[block_size1] += lds_data[0];
127
128
                    }
                    __syncthreads();
129
130

                    item_num -= block_size;
131
132
                }

Shucai Xiao's avatar
Shucai Xiao committed
133
134
                auto log_batch_sum =
                    ::log(to_hip_type(lds_data[block_size1])) + lds_data[block_size];
135
                for(size_t i = thr_idx; i < n_dims; i += block_size)
136
                {
Shucai Xiao's avatar
Shucai Xiao committed
137
138
                    data_idx[axis]    = i;
                    size_t index      = desc_data.linear(data_idx);
139
                    output_ptr[index] = input_ptr[index] - log_batch_sum;
140
141
                }
            });
142
143
144
145
146
147
148
149
150
151
        });
    });

    return args.back();
}

} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx