onnx_parser.cpp 15.5 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pad_calc.hpp>
9
#include <migraphx/common.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
36
37
38
39
40
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
        return {};
    }

Paul Fultz II's avatar
Paul Fultz II committed
41
42
43
44
45
46
47
48
49
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
Shucai Xiao's avatar
Shucai Xiao committed
50
51
52
53
54
55
56
57
58
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
        return {};
    }

    // scalar input
Paul Fultz II's avatar
Paul Fultz II committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
    std::size_t size = r.size();
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
Shucai Xiao's avatar
Shucai Xiao committed
73
74
75
76
77
    if(ins->name() == "contiguous")
    {
        return ins;
    }

Paul Fultz II's avatar
Paul Fultz II committed
78
79
80
81
82
83
84
85
86
    return add_instruction(make_op("contiguous"), ins);
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Shucai Xiao's avatar
Shucai Xiao committed
87
        auto bias_bcast = mod->add_instruction(
88
            make_op("broadcast", {{"axis", axis}, {"out_lens", curr_ins->get_shape().lens()}}),
Paul Fultz II's avatar
Paul Fultz II committed
89
            args[2]);
Shucai Xiao's avatar
Shucai Xiao committed
90
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
91
92
93
94
95
96
97
98
    }
    return curr_ins;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
99
    return add_common_op(*mod, make_op(op_name), {arg0, arg1});
Paul Fultz II's avatar
Paul Fultz II committed
100
101
102
103
104
105
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
106
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
107
108
}

Shucai Xiao's avatar
Shucai Xiao committed
109
110
111
112
113
114
115
instruction_ref onnx_parser::node_info::add_instruction(const operation& op,
                                                        const std::vector<instruction_ref>& args,
                                                        const std::vector<module_ref>& mods) const
{
    return mod->add_instruction(op, args, mods);
}

Paul Fultz II's avatar
Paul Fultz II committed
116
117
instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
118
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
156
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
157
158
159
{
    if(!contains(instructions, name))
    {
Shucai Xiao's avatar
Shucai Xiao committed
160
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
161
162
163
164
165
166
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
167
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
168
169
170
171
172
173
174
175
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
        this->path = parent_path;

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
Shucai Xiao's avatar
Shucai Xiao committed
176
177
178
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
179
180
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
181
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
182
183
184
185
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
186
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
187
188
189
190
191
    }
}

void onnx_parser::parse_from(const void* data, std::size_t size)
{
Shucai Xiao's avatar
Shucai Xiao committed
192
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
193
194
195
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
Shucai Xiao's avatar
Shucai Xiao committed
196
197
198
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
199
200
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
201
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
202
203
204
205
206
207
208
209
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
{
    const auto& opset_import = model.opset_import();
    int64_t version          = -1;
    for(const auto& opset : opset_import)
    {
        if(opset.has_version())
        {
            version = std::max(version, opset.version());
        }
    }

    return version;
}

Shucai Xiao's avatar
Shucai Xiao committed
225
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
Paul Fultz II's avatar
Paul Fultz II committed
226
{
Shucai Xiao's avatar
Shucai Xiao committed
227
    std::unordered_map<std::string, instruction_ref> mod_insts;
Paul Fultz II's avatar
Paul Fultz II committed
228
229
    for(auto&& f : graph.initializer())
    {
Shucai Xiao's avatar
Shucai Xiao committed
230
231
        // backup instructions in parent mod
        mod_insts[f.name()] = mod->add_literal(parse_tensor(f));
Paul Fultz II's avatar
Paul Fultz II committed
232
233
234
235
236
237
    }

    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
Shucai Xiao's avatar
Shucai Xiao committed
238
        if(!contains(mod_insts, name))
Paul Fultz II's avatar
Paul Fultz II committed
239
        {
Shucai Xiao's avatar
Shucai Xiao committed
240
241
242
243
244
245
246
247
248
249
            // ONNX specification does not specify hwo to deal with the
            // scenario that a nested subgraph contains a parameter with the
            // name existed in its parent graph.
            // In the current implementation, MIGraphX throws an exception for that.
            if(contains(instructions, name))
            {
                MIGRAPHX_THROW("module \"" + mod->name() + "\" has parameter name \"" + name +
                               "\" existing in parent graph!");
            }

Paul Fultz II's avatar
Paul Fultz II committed
250
251
252
253
254
255
            std::vector<std::size_t> dims;
            if(map_input_dims.count(name) > 0)
            {
                dims = map_input_dims.at(name);
            }

Shucai Xiao's avatar
Shucai Xiao committed
256
257
            shape s         = parse_type(input.type(), dims);
            mod_insts[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
258
259
260
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
261
262
    std::copy(mod_insts.begin(), mod_insts.end(), std::inserter(instructions, instructions.end()));

Paul Fultz II's avatar
Paul Fultz II committed
263
264
265
266
267
268
269
    for(auto&& node : graph.node())
    {
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
270
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
        std::size_t output_num = static_cast<std::size_t>(node.output().size());
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
285
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
286
287
288
289
290
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
291
292
293
            std::string node_name = node.op_type() + "_" + std::to_string(mod->size());
            result                = ops[node.op_type()](
                *this, {get_attributes(node), output_num, node_name, mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        }

        output_num = std::min<std::size_t>(output_num, result.size());
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
        [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

    // add the return instuction
Shucai Xiao's avatar
Shucai Xiao committed
325
    mod->add_return(output_ins);
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328

    // remove instructions added in this mod
    erase_if(instructions, [&](auto&& p) { return mod->has_instruction(p.second); });
Paul Fultz II's avatar
Paul Fultz II committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
    std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
    if(not t.external_data().empty())
    {
        const std::string& data_file = t.external_data().at(0).value();
        auto raw_buffer              = read_buffer(path + "/" + data_file);
        std::string s(raw_buffer.begin(), raw_buffer.end());
        auto type = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        auto type            = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
    case onnx::TensorProto::FLOAT16:
    {
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
                              const std::vector<std::size_t>& input_dims) const
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
    if(!input_dims.empty())
    {
        return {shape_type, input_dims};
    }

    std::vector<std::size_t> dims;
    auto&& tensor_dims = t.tensor_type().shape().dim();
    std::transform(tensor_dims.begin(),
                   tensor_dims.end(),
                   std::back_inserter(dims),
                   [&](auto&& d) -> std::size_t {
                       if(d.has_dim_value())
                       {
                           if(static_cast<int>(d.dim_value()) <= 0)
                           {
                               return default_dim_value;
                           }
                           return d.dim_value();
                       }
                       else
                       {
                           return default_dim_value;
                       }
                   });

    if(dims.empty())
        return {shape_type};

    return {shape_type, dims};
}

shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
    default: { MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
    }
    }
}

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx