onnx_parser.cpp 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul Fultz II's avatar
Paul Fultz II committed
24
25
26
27
28
29
30
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
31
#include <migraphx/common.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
32
33
34
35
36
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>
37
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
38
39
40

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
41

Paul Fultz II's avatar
Paul Fultz II committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
namespace onnx {

static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
Shucai Xiao's avatar
Shucai Xiao committed
57
58
59
60
61
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
62
        return literal{shape_type};
Shucai Xiao's avatar
Shucai Xiao committed
63
64
    }

Paul Fultz II's avatar
Paul Fultz II committed
65
66
67
68
69
70
71
72
73
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
Shucai Xiao's avatar
Shucai Xiao committed
74
75
76
77
78
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
79
        return literal{shape_type};
Shucai Xiao's avatar
Shucai Xiao committed
80
81
82
    }

    // scalar input
Paul Fultz II's avatar
Paul Fultz II committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
    std::size_t size = r.size();
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
Shucai Xiao's avatar
Shucai Xiao committed
97
98
99
    auto attr       = ins->get_operator().to_value();
    std::string key = "require_std_shape";
    if((attr.get(key, false)) or (not ins->get_shape().standard()))
Paul Fultz II's avatar
Paul Fultz II committed
100
    {
Shucai Xiao's avatar
Shucai Xiao committed
101
        return add_instruction(make_op("contiguous"), ins);
Paul Fultz II's avatar
Paul Fultz II committed
102
103
    }

Shucai Xiao's avatar
Shucai Xiao committed
104
    return ins;
Paul Fultz II's avatar
Paul Fultz II committed
105
106
107
108
109
110
111
112
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Charlie Lin's avatar
Charlie Lin committed
113
114
115
116
117
118
119
120
121
122
123
124
125
        instruction_ref bias_bcast;
        // if curr_ins has a dynamic output shape use 2 input broadcast
        if(curr_ins->get_shape().dynamic())
        {
            bias_bcast =
                mod->add_instruction(make_op("broadcast", {{"axis", axis}}), args[2], curr_ins);
        }
        else
        {
            bias_bcast = mod->add_instruction(
                make_op("broadcast", {{"axis", axis}, {"out_lens", curr_ins->get_shape().lens()}}),
                args[2]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
126
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
127
128
129
130
131
132
133
134
    }
    return curr_ins;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
135
136
137
138
139
140
141
    return this->add_common_op(op_name, arg0, arg1);
}

instruction_ref onnx_parser::node_info::add_common_op(const std::string& op_name,
                                                      std::vector<instruction_ref> inputs) const
{
    return migraphx::add_common_op(*mod, make_op(op_name), std::move(inputs));
Paul Fultz II's avatar
Paul Fultz II committed
142
143
144
145
146
147
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
148
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
149
150
}

Shucai Xiao's avatar
Shucai Xiao committed
151
152
153
154
155
156
157
instruction_ref onnx_parser::node_info::add_instruction(const operation& op,
                                                        const std::vector<instruction_ref>& args,
                                                        const std::vector<module_ref>& mods) const
{
    return mod->add_instruction(op, args, mods);
}

Paul Fultz II's avatar
Paul Fultz II committed
158
159
instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
160
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
198
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
199
{
200
    if(not contains(instructions, name))
Paul Fultz II's avatar
Paul Fultz II committed
201
    {
Shucai Xiao's avatar
Shucai Xiao committed
202
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
203
204
205
206
207
208
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
209
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
210
211
212
213
214
215
216
217
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
        this->path = parent_path;

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
Shucai Xiao's avatar
Shucai Xiao committed
218
219
220
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
221
222
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
223
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
224
225
226
227
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
228
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
229
230
231
232
233
    }
}

void onnx_parser::parse_from(const void* data, std::size_t size)
{
Shucai Xiao's avatar
Shucai Xiao committed
234
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
235
236
237
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
Shucai Xiao's avatar
Shucai Xiao committed
238
239
240
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
241
242
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
243
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
244
245
246
247
248
249
250
251
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
{
    const auto& opset_import = model.opset_import();
    int64_t version          = -1;
    for(const auto& opset : opset_import)
    {
        if(opset.has_version())
        {
            version = std::max(version, opset.version());
        }
    }

    return version;
}

Shucai Xiao's avatar
Shucai Xiao committed
267
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
Paul Fultz II's avatar
Paul Fultz II committed
268
{
Shucai Xiao's avatar
Shucai Xiao committed
269
    std::unordered_map<std::string, instruction_ref> mod_insts;
Paul Fultz II's avatar
Paul Fultz II committed
270
271
    for(auto&& f : graph.initializer())
    {
Shucai Xiao's avatar
Shucai Xiao committed
272
273
        // backup instructions in parent mod
        mod_insts[f.name()] = mod->add_literal(parse_tensor(f));
Paul Fultz II's avatar
Paul Fultz II committed
274
275
276
277
278
279
    }

    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
280
        if(not contains(mod_insts, name))
Paul Fultz II's avatar
Paul Fultz II committed
281
        {
282
            // ONNX specification does not specify how to deal with the
Shucai Xiao's avatar
Shucai Xiao committed
283
284
285
286
287
288
289
290
291
            // scenario that a nested subgraph contains a parameter with the
            // name existed in its parent graph.
            // In the current implementation, MIGraphX throws an exception for that.
            if(contains(instructions, name))
            {
                MIGRAPHX_THROW("module \"" + mod->name() + "\" has parameter name \"" + name +
                               "\" existing in parent graph!");
            }

292
            shape s;
Paul Fultz II's avatar
Paul Fultz II committed
293
294
295
296
            std::vector<std::size_t> dims;
            if(map_input_dims.count(name) > 0)
            {
                dims = map_input_dims.at(name);
297
298
299
300
301
302
303
304
305
306
                s    = parse_type(input.type(), dims);
            }
            else if(map_dyn_input_dims.count(name) > 0)
            {
                shape::type_t shape_type = get_type(input.type().tensor_type().elem_type());
                s                        = {shape_type, map_dyn_input_dims.at(name)};
            }
            else
            {
                s = parse_type(input.type(), dims);
Paul Fultz II's avatar
Paul Fultz II committed
307
            }
Shucai Xiao's avatar
Shucai Xiao committed
308
            mod_insts[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
309
310
311
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
312
313
    std::copy(mod_insts.begin(), mod_insts.end(), std::inserter(instructions, instructions.end()));

Paul Fultz II's avatar
Paul Fultz II committed
314
315
316
317
318
319
320
    for(auto&& node : graph.node())
    {
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
321
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
        std::size_t output_num = static_cast<std::size_t>(node.output().size());
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
336
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
337
338
339
340
341
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
342
343
344
            std::string node_name = node.op_type() + "_" + std::to_string(mod->size());
            result                = ops[node.op_type()](
                *this, {get_attributes(node), output_num, node_name, mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        }

        output_num = std::min<std::size_t>(output_num, result.size());
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
367
        [&](const auto& name) { return not(name.empty() or instructions.count(name) == 0); });
Paul Fultz II's avatar
Paul Fultz II committed
368
369
370
371
372
373
374
375

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

    // add the return instuction
Shucai Xiao's avatar
Shucai Xiao committed
376
    mod->add_return(output_ins);
Shucai Xiao's avatar
Shucai Xiao committed
377
378
379

    // remove instructions added in this mod
    erase_if(instructions, [&](auto&& p) { return mod->has_instruction(p.second); });
Paul Fultz II's avatar
Paul Fultz II committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
    std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
406
407
408
409
    auto type = get_type(t.data_type());
    shape tensor_shape(type, dims);
    auto external_data = t.external_data();
    if(not external_data.empty())
Paul Fultz II's avatar
Paul Fultz II committed
410
    {
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        const std::string& data_file = external_data.at(0).value();
        size_t num_data_fields       = external_data.size();
        size_t offset                = 0;
        size_t nbytes                = tensor_shape.bytes();

        if(num_data_fields > 1) // if offset field is present
        {
            offset = std::stoul(t.external_data().at(1).value());
        }
        if(num_data_fields > 2) // if nbytes field is present
        {
            nbytes = std::stoul(t.external_data().at(2).value());
        }
        auto raw_buffer = read_buffer(path + "/" + data_file, offset, nbytes);
Paul Fultz II's avatar
Paul Fultz II committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        std::string s(raw_buffer.begin(), raw_buffer.end());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
bpickrel's avatar
bpickrel committed
447
    case onnx::TensorProto::FLOAT16: {
Paul Fultz II's avatar
Paul Fultz II committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
                              const std::vector<std::size_t>& input_dims) const
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
470
    if(not input_dims.empty())
Paul Fultz II's avatar
Paul Fultz II committed
471
472
473
474
    {
        return {shape_type, input_dims};
    }

475
    std::vector<shape::dynamic_dimension> dynamic_dims;
Paul Fultz II's avatar
Paul Fultz II committed
476
477
478
    auto&& tensor_dims = t.tensor_type().shape().dim();
    std::transform(tensor_dims.begin(),
                   tensor_dims.end(),
479
480
                   std::back_inserter(dynamic_dims),
                   [&](auto&& d) -> shape::dynamic_dimension {
Paul Fultz II's avatar
Paul Fultz II committed
481
482
483
484
                       if(d.has_dim_value())
                       {
                           if(static_cast<int>(d.dim_value()) <= 0)
                           {
485
                               return default_dyn_dim_value;
Paul Fultz II's avatar
Paul Fultz II committed
486
                           }
487
488
                           std::size_t tmp = d.dim_value();
                           return {tmp, tmp, 0};
Paul Fultz II's avatar
Paul Fultz II committed
489
490
491
                       }
                       else
                       {
492
                           return default_dyn_dim_value;
Paul Fultz II's avatar
Paul Fultz II committed
493
494
495
                       }
                   });

496
497
    if(dynamic_dims.empty())
    {
Paul Fultz II's avatar
Paul Fultz II committed
498
        return {shape_type};
499
500
501
502
503
504
505
506
507
508
509
    }
    if(std::all_of(dynamic_dims.begin(), dynamic_dims.end(), [](auto dd) { return dd.is_fixed(); }))
    {
        std::vector<std::size_t> dims;
        std::transform(dynamic_dims.begin(),
                       dynamic_dims.end(),
                       std::back_inserter(dims),
                       [](auto d) { return d.max; });
        return {shape_type, dims};
    }
    return {shape_type, dynamic_dims};
Paul Fultz II's avatar
Paul Fultz II committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
}

shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
bpickrel's avatar
bpickrel committed
528
529
    default: {
        MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
Paul Fultz II's avatar
Paul Fultz II committed
530
531
532
533
    }
    }
}

534
535
536
bool is_type_float(shape::type_t dtype)
{
    bool r = false;
537
    if(dtype == shape::float_type or dtype == shape::double_type or dtype == shape::half_type)
538
539
540
541
542
543
    {
        r = true;
    }
    return r;
}

Paul Fultz II's avatar
Paul Fultz II committed
544
545
546
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx