quant_gemm.cpp 6.17 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
#include <migraphx/gpu/quant_gemm.hpp>
#include <migraphx/gpu/context.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

template <class... Ts>
9
rocblas_status generic_rocblas_gemm_ex(Ts&&... xs)
Shucai Xiao's avatar
Shucai Xiao committed
10
{
11
    return rocblas_gemm_ex(std::forward<Ts>(xs)...);
Shucai Xiao's avatar
Shucai Xiao committed
12
13
14
}

template <class... Ts>
15
rocblas_status generic_rocblas_batched_gemm_ex(Ts&&... xs)
Shucai Xiao's avatar
Shucai Xiao committed
16
{
17
    return rocblas_gemm_strided_batched_ex(std::forward<Ts>(xs)...);
Shucai Xiao's avatar
Shucai Xiao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
}

template <class T>
struct compute_rocblas_type
{
    using type = T;
};

template <class T>
struct compute_rocblas_type<const T>
{
    using type = const typename compute_rocblas_type<T>::type;
};

template <>
struct compute_rocblas_type<half>
{
    using type = rocblas_half;
};

template <class T>
using rb_type = typename compute_rocblas_type<T>::type;

template <class T>
rb_type<T> to_rocblas_type(T x)
{
    return reinterpret_cast<const rb_type<T>&>(x);
}

template <class T>
rb_type<T>* to_rocblas_type(T* x)
{
    return reinterpret_cast<rb_type<T>*>(x);
}

shape miopen_quant_gemm::compute_shape(const std::vector<shape>& inputs) const
{
    std::vector<shape> input_shapes(inputs.begin(), inputs.begin() + inputs.size() - 1);
    check_shapes{input_shapes}.not_broadcasted();
    return op.compute_shape(input_shapes);
}

argument miopen_quant_gemm::compute(context& ctx,
Shucai Xiao's avatar
Shucai Xiao committed
61
62
                                    const shape& output_shape,
                                    const std::vector<argument>& args) const
Shucai Xiao's avatar
Shucai Xiao committed
63
64
{
    bool is_3inputs = (args.size() == 4);
Shucai Xiao's avatar
Shucai Xiao committed
65
    int8_t beta     = 0;
Shucai Xiao's avatar
Shucai Xiao committed
66
67
68
69
70
71
72
73
    if(is_3inputs)
    {
        beta = op.beta;
    }

    auto a_lens = args[0].get_shape().lens();
    auto b_lens = args[1].get_shape().lens();
    output_shape.visit_type([&](auto as) {
Shucai Xiao's avatar
Shucai Xiao committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        auto n_dim      = output_shape.lens().size();
        auto dim_1      = n_dim - 1;
        auto dim_0      = n_dim - 2;
        auto alpha_r    = to_rocblas_type(as(op.alpha));
        auto beta_r     = to_rocblas_type(as(beta));
        bool transa     = args[0].get_shape().transposed();
        bool transb     = args[1].get_shape().transposed();
        rocblas_int lda = args[0].get_shape().strides()[transa ? dim_1 : dim_0];
        rocblas_int ldb = args[1].get_shape().strides()[transb ? dim_1 : dim_0];
        rocblas_int ldc = args[2].get_shape().strides()[dim_0];
        auto out_lens   = output_shape.lens();
        rocblas_int m   = out_lens[dim_0];
        rocblas_int n   = out_lens[dim_1];
        rocblas_int k   = args[0].get_shape().lens()[dim_1];
88
89
        auto to_pointer = [&](auto&& arg) { return to_rocblas_type(as.from(arg.data())); };
        assert(k % 4 == 0);
90
91
        assert(!transa or (lda % 4 == 0));
        assert(transb or (ldb % 4 == 0));
92

Shucai Xiao's avatar
Shucai Xiao committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        // need to pack B in thi scenario
        if (!transb)
        {
            int nb = 4;
            for(int i_m = 0; i_m < m; i_m++)
            {
                for(int i_k = 0; i_k < k; i_k++)
                {
                    A_packed[i_k % nb + (i_m + (i_k / nb) * lda) * nb] = A[i_m + i_k * lda];
                }
            }
        }

        // need to pack A in this scenario
        if (transa)
        {

        }

Shucai Xiao's avatar
Shucai Xiao committed
112
113
114
115
        auto num_matrices = std::accumulate(
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
        if(num_matrices == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
116
117
118
119
            // the rocblas_gemm API handles inputs and output matrices as 
            // column-major format. When doing a C = A * B, we actually do
            // C^T = (B^T) * (A^T). That is the reason we input args[1] as
            // A and args[0] as B in calling the rocblas_gemm.
120
            generic_rocblas_gemm_ex(ctx.get_stream().get_rocblas(),
121
                                    transb ? rocblas_operation_transpose : rocblas_operation_none,
122
                                    transa ? rocblas_operation_transpose : rocblas_operation_none,
123
                                    n,
124
                                    m,
Shucai Xiao's avatar
Shucai Xiao committed
125
126
                                    k,
                                    &alpha_r,
127
128
129
                                    to_pointer(args[1]),
                                    rocblas_datatype_i8_r,
                                    ldb,
130
131
132
                                    to_pointer(args[0]),
                                    rocblas_datatype_i8_r,
                                    lda,
Shucai Xiao's avatar
Shucai Xiao committed
133
134
135
136
137
138
139
140
141
142
143
144
145
                                    &beta_r,
                                    to_pointer(args[2]),
                                    rocblas_datatype_i32_r,
                                    ldc,
                                    (is_3inputs ? to_pointer(args[3]) : to_pointer(args[2])),
                                    rocblas_datatype_i32_r,
                                    ldc,
                                    rocblas_datatype_i32_r,
                                    rocblas_gemm_algo_standard,
                                    0,
                                    0,
                                    nullptr,
                                    nullptr);
Shucai Xiao's avatar
Shucai Xiao committed
146
147
148
        }
        else
        {
149
            generic_rocblas_batched_gemm_ex(
Shucai Xiao's avatar
Shucai Xiao committed
150
151
152
153
154
155
156
157
                ctx.get_stream().get_rocblas(),
                transb ? rocblas_operation_transpose : rocblas_operation_none,
                transa ? rocblas_operation_transpose : rocblas_operation_none,
                n,
                m,
                k,
                &alpha_r,
                to_pointer(args[1]),
158
                rocblas_datatype_i8_r,
Shucai Xiao's avatar
Shucai Xiao committed
159
160
161
                ldb,
                k * n,
                to_pointer(args[0]),
162
                rocblas_datatype_i8_r,
Shucai Xiao's avatar
Shucai Xiao committed
163
164
165
                lda,
                m * k,
                &beta_r,
166
167
168
169
                to_pointer(args[2]),
                rocblas_datatype_i32_r,
                ldc,
                m * n,
Shucai Xiao's avatar
Shucai Xiao committed
170
                (is_3inputs ? to_pointer(args[3]) : to_pointer(args[2])),
171
                rocblas_datatype_i32_r,
Shucai Xiao's avatar
Shucai Xiao committed
172
173
                ldc,
                m * n,
174
175
176
                num_matrices,
                rocblas_datatype_i32_r,
                rocblas_gemm_algo_standard,
Shucai Xiao's avatar
Shucai Xiao committed
177
178
179
180
                0,
                0,
                nullptr,
                nullptr);
Shucai Xiao's avatar
Shucai Xiao committed
181
182
183
184
185
186
187
188
189
        }
    });

    return (is_3inputs ? args[3] : args[2]);
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx