quant_gemm.cpp 7.76 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include <migraphx/gpu/quant_gemm.hpp>
#include <migraphx/gpu/context.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

template <class... Ts>
rocblas_status generic_rocblas_scal(shape::as<float>, Ts&&... xs)
{
    return rocblas_sscal(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_scal(shape::as<double>, Ts&&... xs)
{
    return rocblas_dscal(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
rocblas_status generic_rocblas_scal(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_SCAL: type unsupported by rocblas");
}

template <class... Ts>
rocblas_status generic_rocblas_axpy(shape::as<half>, Ts&&... xs)
{
    return rocblas_haxpy(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_axpy(shape::as<float>, Ts&&... xs)
{
    return rocblas_saxpy(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_axpy(shape::as<double>, Ts&&... xs)
{
    return rocblas_daxpy(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
rocblas_status generic_rocblas_axpy(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_AXPY: type unsupported by rocblas");
}

template <class... Ts>
rocblas_status generic_rocblas_dot(shape::as<float>, Ts&&... xs)
{
    return rocblas_sdot(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_dot(shape::as<double>, Ts&&... xs)
{
    return rocblas_ddot(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
rocblas_status generic_rocblas_dot(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_DOT: type unsupported by rocblas");
}

template <class... Ts>
rocblas_status generic_rocblas_gemv(shape::as<float>, Ts&&... xs)
{
    return rocblas_sgemv(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_gemv(shape::as<double>, Ts&&... xs)
{
    return rocblas_dgemv(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
rocblas_status generic_rocblas_gemv(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_GEMMV: type unsupported by rocblas");
}

template <class... Ts>
rocblas_status generic_rocblas_batched_gemm(shape::as<float>, Ts&&... xs)
{
    return rocblas_sgemm_strided_batched(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_batched_gemm(shape::as<double>, Ts&&... xs)
{
    return rocblas_dgemm_strided_batched(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_batched_gemm(shape::as<half>, Ts&&... xs)
{
    return rocblas_hgemm_strided_batched(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
rocblas_status generic_rocblas_batched_gemm(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_BATCHED_GEMM: type unsupported by rocblas");
}

template <class... Ts>
rocblas_status generic_rocblas_gemm(shape::as<float>, Ts&&... xs)
{
    return rocblas_sgemm(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_gemm(shape::as<double>, Ts&&... xs)
{
    return rocblas_dgemm(std::forward<Ts>(xs)...);
}

template <class... Ts>
rocblas_status generic_rocblas_gemm(shape::as<half>, Ts&&... xs)
{
    return rocblas_hgemm(std::forward<Ts>(xs)...);
}

template <class T, class... Ts>
rocblas_status generic_rocblas_gemm(shape::as<T>, Ts&&...)
{
    MIGRAPHX_THROW("GENERIC_ROCBLAS_GEMM: type unsupported by rocblas");
}

template <class T>
struct compute_rocblas_type
{
    using type = T;
};

template <class T>
struct compute_rocblas_type<const T>
{
    using type = const typename compute_rocblas_type<T>::type;
};

template <>
struct compute_rocblas_type<half>
{
    using type = rocblas_half;
};

template <class T>
using rb_type = typename compute_rocblas_type<T>::type;

template <class T>
rb_type<T> to_rocblas_type(T x)
{
    return reinterpret_cast<const rb_type<T>&>(x);
}

template <class T>
rb_type<T>* to_rocblas_type(T* x)
{
    return reinterpret_cast<rb_type<T>*>(x);
}

rocblas_half to_rocblas_type(half x) { return reinterpret_cast<const rocblas_half&>(x); }

shape miopen_quant_gemm::compute_shape(const std::vector<shape>& inputs) const
{
    std::vector<shape> input_shapes(inputs.begin(), inputs.begin() + inputs.size() - 1);
    check_shapes{input_shapes}.not_broadcasted();
    return op.compute_shape(input_shapes);
}

argument miopen_quant_gemm::compute(context& ctx,
                              const shape& output_shape,
                              const std::vector<argument>& args) const
{
    bool is_3inputs = (args.size() == 4);
    float beta      = 0.0f;
    if(is_3inputs)
    {
        output_shape.visit_type([&](auto as) {
            auto to_pointer = [&](auto&& arg) { return to_rocblas_type(as.from(arg.data())); };
            hipMemcpyAsync(to_pointer(args[3]),
                           to_pointer(args[2]),
                           output_shape.bytes(),
                           hipMemcpyDeviceToDevice,
                           ctx.get_stream().get());
        });
        beta = op.beta;
    }

    auto a_lens = args[0].get_shape().lens();
    auto b_lens = args[1].get_shape().lens();
    output_shape.visit_type([&](auto as) {
        auto n_dim        = output_shape.lens().size();
        auto dim_1        = n_dim - 1;
        auto dim_0        = n_dim - 2;
        auto alpha_r      = to_rocblas_type(as(op.alpha));
        auto beta_r       = to_rocblas_type(as(beta));
        bool transa       = args[0].get_shape().transposed();
        bool transb       = args[1].get_shape().transposed();
        rocblas_int lda   = args[0].get_shape().strides()[transa ? dim_1 : dim_0];
        rocblas_int ldb   = args[1].get_shape().strides()[transb ? dim_1 : dim_0];
        rocblas_int ldc   = args[2].get_shape().strides()[dim_0];
        auto out_lens     = output_shape.lens();
        rocblas_int m     = out_lens[dim_0];
        rocblas_int n     = out_lens[dim_1];
        rocblas_int k     = args[0].get_shape().lens()[dim_1];
        auto num_matrices = std::accumulate(
            out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies<std::size_t>());
        auto to_pointer = [&](auto&& arg) { return to_rocblas_type(as.from(arg.data())); };
        if(num_matrices == 1)
        {
            generic_rocblas_gemm(as,
                                 ctx.get_stream().get_rocblas(),
                                 transb ? rocblas_operation_transpose : rocblas_operation_none,
                                 transa ? rocblas_operation_transpose : rocblas_operation_none,
                                 n,
                                 m,
                                 k,
                                 &alpha_r,
                                 to_pointer(args[1]),
                                 ldb,
                                 to_pointer(args[0]),
                                 lda,
                                 &beta_r,
                                 (is_3inputs ? to_pointer(args[3]) : to_pointer(args[2])),
                                 ldc);
        }
        else
        {
            generic_rocblas_batched_gemm(
                as,
                ctx.get_stream().get_rocblas(),
                transb ? rocblas_operation_transpose : rocblas_operation_none,
                transa ? rocblas_operation_transpose : rocblas_operation_none,
                n,
                m,
                k,
                &alpha_r,
                to_pointer(args[1]),
                ldb,
                k * n,
                to_pointer(args[0]),
                lda,
                m * k,
                &beta_r,
                (is_3inputs ? to_pointer(args[3]) : to_pointer(args[2])),
                ldc,
                m * n,
                num_matrices);
        }
    });

    return (is_3inputs ? args[3] : args[2]);
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx