onnx_parser.cpp 16.4 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
Shucai Xiao's avatar
Shucai Xiao committed
32
33
34
35
36
37
38
39
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
        return {};
    }

Paul Fultz II's avatar
Paul Fultz II committed
40
41
42
43
44
45
46
47
48
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
Shucai Xiao's avatar
Shucai Xiao committed
49
50
51
52
53
54
55
56
57
    // empty input
    auto elem_num =
        std::accumulate(dims.begin(), dims.end(), std::size_t(1), std::multiplies<std::size_t>());
    if(elem_num == 0)
    {
        return {};
    }

    // scalar input
Paul Fultz II's avatar
Paul Fultz II committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
    std::size_t size = r.size();
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
    if(ins->get_shape().standard())
    {
        return ins;
    }

    return add_instruction(make_op("contiguous"), ins);
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Shucai Xiao's avatar
Shucai Xiao committed
86
        auto bias_bcast = mod->add_instruction(
Paul Fultz II's avatar
Paul Fultz II committed
87
88
            make_op("broadcast", {{"axis", axis}, {"dims", curr_ins->get_shape().lens()}}),
            args[2]);
Shucai Xiao's avatar
Shucai Xiao committed
89
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    }
    return curr_ins;
}

std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                  std::vector<std::size_t> s1)
{
    // Example:
    // s0 = (3,2,4,5) and s1 = (2,1,1)
    //
    // In this case we need to broadcast (:,1,1) portion of
    // s1 plus broadcast the 1st dimension of s1
    // giving output_lens = (3,2,4,5)
    //
    // Another example:
    // s0 = (3,2,1,5) and s1 = (2,7,5)
    // In this case we need to broadcast the (:,:,1:,:) axis
    // of s0 plus the 1st dimension of s1 giving
    // output_lens = (3,2,7,5)
    if(s0.size() > s1.size())
    {
        s0.swap(s1);
    }

    std::vector<std::size_t> out_lens(s1);
    auto offset = s1.size() - s0.size();
    std::transform(
        s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
            if(a != b and a != 1 and b != 1)
            {
                MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + to_string_range(s0) + "} and {" +
                               to_string_range(s1) + "} mismatch!");
            }
            return std::max(a, b);
        });

    return out_lens;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
    if(arg0->get_shape().lens() != arg1->get_shape().lens())
    {
        // Get lengths for both arguments
        auto s0       = arg0->get_shape().lens();
        auto s1       = arg1->get_shape().lens();
        auto out_lens = compute_broadcasted_lens(s0, s1);

        auto l0 = arg0;
        if(arg0->get_shape().lens() != out_lens)
            l0 = add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}), arg0);

        auto l1 = arg1;
        if(arg1->get_shape().lens() != out_lens)
            l1 = add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}), arg1);

        return add_instruction(make_op(op_name), l0, l1);
    }
    else
    {
        return add_instruction(make_op(op_name), {arg0, arg1});
    }
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
160
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
161
162
}

Shucai Xiao's avatar
Shucai Xiao committed
163
164
165
166
167
168
169
instruction_ref onnx_parser::node_info::add_instruction(const operation& op,
                                                        const std::vector<instruction_ref>& args,
                                                        const std::vector<module_ref>& mods) const
{
    return mod->add_instruction(op, args, mods);
}

Paul Fultz II's avatar
Paul Fultz II committed
170
171
instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
172
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
210
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
211
212
213
{
    if(!contains(instructions, name))
    {
Shucai Xiao's avatar
Shucai Xiao committed
214
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
215
216
217
218
219
220
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
221
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
222
223
224
225
226
227
228
229
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
        this->path = parent_path;

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
Shucai Xiao's avatar
Shucai Xiao committed
230
231
232
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
233
234
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
235
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
236
237
238
239
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
240
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
241
242
243
244
245
    }
}

void onnx_parser::parse_from(const void* data, std::size_t size)
{
Shucai Xiao's avatar
Shucai Xiao committed
246
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
247
248
249
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
Shucai Xiao's avatar
Shucai Xiao committed
250
251
252
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
253
254
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
255
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
256
257
258
259
260
261
262
263
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
{
    const auto& opset_import = model.opset_import();
    int64_t version          = -1;
    for(const auto& opset : opset_import)
    {
        if(opset.has_version())
        {
            version = std::max(version, opset.version());
        }
    }

    return version;
}

Shucai Xiao's avatar
Shucai Xiao committed
279
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
Paul Fultz II's avatar
Paul Fultz II committed
280
281
282
{
    for(auto&& f : graph.initializer())
    {
Shucai Xiao's avatar
Shucai Xiao committed
283
        instructions[f.name()] = mod->add_literal(parse_tensor(f));
Paul Fultz II's avatar
Paul Fultz II committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    }

    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
        if(!contains(instructions, name))
        {
            std::vector<std::size_t> dims;
            if(map_input_dims.count(name) > 0)
            {
                dims = map_input_dims.at(name);
            }

            shape s            = parse_type(input.type(), dims);
Shucai Xiao's avatar
Shucai Xiao committed
299
            instructions[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
300
301
302
303
304
305
306
307
308
309
        }
    }

    for(auto&& node : graph.node())
    {
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
310
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
        std::size_t output_num = static_cast<std::size_t>(node.output().size());
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
325
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
326
327
328
329
330
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
331
332
333
            std::string node_name = node.op_type() + "_" + std::to_string(mod->size());
            result                = ops[node.op_type()](
                *this, {get_attributes(node), output_num, node_name, mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        }

        output_num = std::min<std::size_t>(output_num, result.size());
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
        [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

    // add the return instuction
Shucai Xiao's avatar
Shucai Xiao committed
365
    mod->add_return(output_ins);
Paul Fultz II's avatar
Paul Fultz II committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
    std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
    if(not t.external_data().empty())
    {
        const std::string& data_file = t.external_data().at(0).value();
        auto raw_buffer              = read_buffer(path + "/" + data_file);
        std::string s(raw_buffer.begin(), raw_buffer.end());
        auto type = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        auto type            = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
    case onnx::TensorProto::FLOAT16:
    {
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
                              const std::vector<std::size_t>& input_dims) const
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
    if(!input_dims.empty())
    {
        return {shape_type, input_dims};
    }

    std::vector<std::size_t> dims;
    auto&& tensor_dims = t.tensor_type().shape().dim();
    std::transform(tensor_dims.begin(),
                   tensor_dims.end(),
                   std::back_inserter(dims),
                   [&](auto&& d) -> std::size_t {
                       if(d.has_dim_value())
                       {
                           if(static_cast<int>(d.dim_value()) <= 0)
                           {
                               return default_dim_value;
                           }
                           return d.dim_value();
                       }
                       else
                       {
                           return default_dim_value;
                       }
                   });

    if(dims.empty())
        return {shape_type};

    return {shape_type, dims};
}

shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
    default: { MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
    }
    }
}

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx