fuse_mlir.cpp 15.9 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_EXTRA_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MLIR);
41

42
43
44
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
45
46
    const bool mlir_disabled = enabled(MIGRAPHX_DISABLE_MLIR{});
    return not mlir_disabled;
47
48
49
50
51
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
52
#ifdef MIGRAPHX_MLIR
53
54

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
55
{
56
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
57
58
59
60
61
62
63
64
65
66
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

    shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
    {
67
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
68
69
70
71
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
72
73
74
75
76
77
78

        module_ref mod = mods[0];
        auto type      = mod->get_output_shapes().front().type();
        std::unordered_map<instruction_ref, shape> ins_shapes;
        size_t param_cnt               = 0;
        std::vector<std::string> names = mod->get_parameter_names();
        std::sort(names.begin(), names.end());
79
        for(const std::string& param_name : names)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        {
            ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
        }
        for(auto ins : iterator_for(*mod))
        {
            if(ins->name() == "@param")
            {
                continue;
            }
            if(ins->name() == "@literal")
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
96
97
98
99
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
100
101
102
103
104
105
106
107
108
109
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
110
111
    }
};
112
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
113
114

namespace {
115
116
117
118
119
120
121
122
123
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
    for(instruction_ref input : gemm_based_op->inputs())
    {
        std::vector<operation> op_stream;
124
125
126
        while(contains(
            {"slice", "transpose", "contiguous", "reshape", "squeeze", "flatten", "unsqueeze"},
            input->name()))
127
        {
128
129
130
131
132
133
            operation op = input->get_operator();
            if(contains({"squeeze", "flatten", "unsqueeze"}, input->name()))
            {
                op = migraphx::make_op("reshape", {{"dims", input->get_shape().lens()}});
            }
            op_stream.push_back(op);
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            input = input->inputs().at(0);
        }
        top_inputs.push_back(input);
        instruction_ref prev_input =
            mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
    instruction_ref new_gemm_based_op =
        mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
    return {new_gemm_based_op, top_inputs};
}
149

150
enum class mlir_mode
151
{
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    all,
    fast,
    int8,
    none
};

auto is_mlir_dot(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "dot" and ins->name() != "quant_dot")
            return false;
        if(mode != mlir_mode::fast)
            return true;
        auto a = ins->inputs().front()->get_shape();
        auto b = ins->inputs().back()->get_shape();
        // auto m = a.lens()[a.lens().size() - 2];
        // auto n = b.lens().back();
        auto k = a.lens().back();
        // Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
        // to avoid poor-performing GEMM kernels from MLIR
        // To-do: Investigate a more precise strategy
        return k <= 2048;
    });
}

auto is_mlir_conv(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "convolution" and ins->name() != "quant_convolution")
            return false;
        value v    = ins->get_operator().to_value();
        auto group = v.at("group").to<int>();
        if(group != 1)
            return false;
        // Avoid MLIR assertion: Index < Length && "Invalid index!"
        if(ins->get_shape().lens().size() != 4)
            return false;
        if(ins->get_shape().type() == shape::int8_type)
            return true;
        if(mode == mlir_mode::int8)
            return false;
        if(mode == mlir_mode::all)
            return true;
        auto w = ins->inputs().at(1)->get_shape();
        if(w.lens().size() != 4)
            return true;
        if(w.lens()[2] != w.lens()[3])
            return true;
        return (w.lens()[3] % 3) != 0;
    });
206
207
}

208
struct find_mlir_fused_ops
Paul Fultz II's avatar
Paul Fultz II committed
209
{
210
211
    mlir_mode conv_mode = mlir_mode::none;
    mlir_mode dot_mode  = mlir_mode::none;
Paul Fultz II's avatar
Paul Fultz II committed
212
213
    auto matcher() const
    {
214
        auto dot_or_conv = match::skip(match::name("contiguous"))(
215
            match::any_of(is_mlir_dot(dot_mode), is_mlir_conv(conv_mode)).bind("gemm_based_op"));
216
        return match::name("pointwise")(match::any_of[match::inputs()](dot_or_conv.bind("x")));
Paul Fultz II's avatar
Paul Fultz II committed
217
218
    }

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    std::unordered_map<instruction_ref, instruction_ref>
    create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape) const
    {
        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        for(auto ins : iterator_for(*pm))
        {
            if(ins->name() != "@literal")
            {
                continue;
            }
            literal r               = ins->get_literal();
            instruction_ref literal = mm->add_literal(r);
            instruction_ref mbcast  = mm->add_instruction(
                make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
            ins_map[ins] = mbcast;
        }
        return ins_map;
    }

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    // Whitelist supported fusion options, including imposing type constraints
    // for cases where MLIR only supports an operation (usually a pointwise function)
    // on particular types.
    bool is_pointwise_op_supported_by_mlir(const instruction& i) const
    {
        using type_t                                      = shape::type_t;
        const auto& name                                  = i.name();
        const auto result_type                            = i.get_shape().type();
        const std::initializer_list<type_t> allowed_types = {type_t::float_type,
                                                             type_t::half_type,
                                                             type_t::int8_type,
                                                             type_t::int32_type,
                                                             type_t::bool_type};
        // Preliminary type check.
        if(not contains(allowed_types, result_type))
        {
            return false;
        }
        const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        const std::initializer_list<std::string> no_bool_ops  = {
            "convolution",
            "quant_convolution",
            "dot",
            "quant_dot",
            "add",
            "clip",
            "relu",
            "sub",
            "mul",
            "div",
            "pow",
            "where",
            "quantizelinear",
            "dequantizelinear",
            "abs",
            "neg",
        };
        const std::initializer_list<std::string> fp_only_ops = {
            "ceil",
            "erf",
            "exp",
            "floor",
            "log",
            "recip",
            "rsqrt",
283
            "sigmoid",
284
285
286
            "softmax",
            "tanh",
        };
287
288
289
        bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
        if(contains(any_type_ops, name))
            return true;
290
        if(result_type != type_t::bool_type and contains(no_bool_ops, name))
291
            return true;
292
        if(is_float and contains(fp_only_ops, name))
293
294
295
            return true;
        // Only conversions between floating types are known to be unambigiously
        // supported.
296
        if(is_float and name == "convert")
297
298
299
300
301
302
303
304
        {
            return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
                return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
            });
        }
        return false;
    }

Paul Fultz II's avatar
Paul Fultz II committed
305
306
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
307
308
309
310
311
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
312
313
314
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
Paul Fultz II's avatar
Paul Fultz II committed
315
316
           }))
            return;
317

Paul Fultz II's avatar
Paul Fultz II committed
318
319
320
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
321
322
323
        std::unordered_map<instruction_ref, instruction_ref> param_map =
            create_param_map_with_literals(mm, pm, gemm_based_op->get_shape());
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, gemm_based_op);
Paul Fultz II's avatar
Paul Fultz II committed
324
325
326
327
        std::transform(names.begin(),
                       names.end(),
                       ins->inputs().begin(),
                       std::inserter(param_map, param_map.end()),
328
                       [&, &anchor = anchor_op](auto name, auto input) {
Paul Fultz II's avatar
Paul Fultz II committed
329
                           if(input == x_ins)
330
                               return std::make_pair(pm->get_parameter(name), anchor);
Paul Fultz II's avatar
Paul Fultz II committed
331
332
333
334
335
336
337
338
339
                           return std::make_pair(pm->get_parameter(name),
                                                 mm->add_parameter(name, input->get_shape()));
                       });
        mm->add_return(mm->insert_instructions(mm->end(), pm, param_map));

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
340
                     [&](auto input) { return input != gemm_based_op; });
341
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
342
        mpm.get_module().replace_instruction(
343
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
344
345
    }
};
346

347
template <auto Matcher>
348
struct find_mlir_standalone_op
349
{
350
351
    mlir_mode mode = mlir_mode::none;
    auto matcher() const { return Matcher(mode); }
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto conv_based_op = r.result;
        // enable only for fp32/fp16/i8 types
        if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           }))
            return;

        static size_t counter = 0;
        module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
        mm->set_bypass();
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, conv_based_op);
        mm->add_return({anchor_op});
        mpm.get_module().replace_instruction(
            conv_based_op, mlir_op{conv_based_op->get_operator()}, top_inputs, {mm});
    }
};

373
374
using find_mlir_standalone_convolution_op = find_mlir_standalone_op<&is_mlir_conv>;
using find_mlir_standalone_dot_op         = find_mlir_standalone_op<&is_mlir_dot>;
375

376
377
378
379
380
381
382
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
383
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
384
385
386
387
388
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);

389
bool is_requested(std::string_view option, bool fallback = false)
390
391
{
    auto string_value  = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
392
393
    if(string_value.empty())
        return fallback;
394
395
396
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}
Paul Fultz II's avatar
Paul Fultz II committed
397
398
} // namespace

399
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
400
401
402
403

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
404
405
    const auto& device_name = ctx == nullptr ? "" : ctx->get_current_device().get_gfx_name();
    const bool is_navi      = starts_with(device_name, "gfx110");
406

407
408
409
410
411
412
413
    auto get_mode = [&](std::string_view option, mlir_mode m1, mlir_mode m2 = mlir_mode::fast) {
        if(is_requested(option))
            return mlir_mode::all;
        if(is_navi)
            return mlir_mode::all;
        return std::max(m1, m2);
    };
414

415
416
417
418
419
420
421
422
423
424
425
    mlir_mode mode =
        (enabled(MIGRAPHX_ENABLE_EXTRA_MLIR{}) or enable_extra) ? mlir_mode::fast : mlir_mode::none;

    match::find_matches(mpm,
                        find_mlir_fused_ops{.conv_mode = get_mode("fused", mlir_mode::fast),
                                            .dot_mode  = get_mode("fused", mode)});

    match::find_matches(
        mpm,
        find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::int8)},
        find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
Paul Fultz II's avatar
Paul Fultz II committed
426
427
428
429
430
431
432
433
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx