onnx_parser.cpp 15.1 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/fallthrough.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pad_calc.hpp>
9
#include <migraphx/common.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
{
    std::unordered_map<std::string, onnx::AttributeProto> result;
    for(auto&& attr : node.attribute())
    {
        result[attr.name()] = attr;
    }
    return result;
}

static literal
31
create_literal(shape::type_t shape_type, const std::vector<int>& dims, const char* data)
Paul Fultz II's avatar
Paul Fultz II committed
32
{
Shucai Xiao's avatar
Shucai Xiao committed
33
    // empty input
Shucai Xiao's avatar
Shucai Xiao committed
34
    auto elem_num = std::accumulate(dims.begin(), dims.end(), int(1), std::multiplies<int>());
Shucai Xiao's avatar
Shucai Xiao committed
35
36
37
38
39
    if(elem_num == 0)
    {
        return {};
    }

Paul Fultz II's avatar
Paul Fultz II committed
40
41
42
43
44
45
46
    // in case of scalar constants in onnx file, use dims=1 to fill initializer data
    if(dims.empty())
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
47
static literal create_literal(shape::type_t shape_type, const std::vector<int>& dims, T data)
Paul Fultz II's avatar
Paul Fultz II committed
48
{
Shucai Xiao's avatar
Shucai Xiao committed
49
    // empty input
Shucai Xiao's avatar
Shucai Xiao committed
50
    auto elem_num = std::accumulate(dims.begin(), dims.end(), int(1), std::multiplies<int>());
Shucai Xiao's avatar
Shucai Xiao committed
51
52
53
54
55
56
    if(elem_num == 0)
    {
        return {};
    }

    // scalar input
Paul Fultz II's avatar
Paul Fultz II committed
57
58
59
60
61
62
63
64
    if(dims.empty())
        return literal{{shape_type}, data.begin(), data.end()};
    return literal{{shape_type, dims}, data.begin(), data.end()};
}

template <class T>
static literal from_repeated(shape::type_t t, const T& r)
{
65
    int size = r.size();
Paul Fultz II's avatar
Paul Fultz II committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    return literal{{t, {size}}, r.begin(), r.end()};
}

instruction_ref onnx_parser::node_info::make_contiguous(instruction_ref ins) const
{
    if(ins->get_shape().standard())
    {
        return ins;
    }

    return add_instruction(make_op("contiguous"), ins);
}

instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_ref>& args,
                                                 instruction_ref curr_ins,
                                                 uint64_t axis) const
{
    if(args.size() == 3)
    {
Shucai Xiao's avatar
Shucai Xiao committed
85
        auto bias_bcast = mod->add_instruction(
86
            make_op("broadcast", {{"axis", axis}, {"out_lens", curr_ins->get_shape().lens()}}),
Paul Fultz II's avatar
Paul Fultz II committed
87
            args[2]);
Shucai Xiao's avatar
Shucai Xiao committed
88
        return mod->add_instruction(make_op("add"), curr_ins, bias_bcast);
Paul Fultz II's avatar
Paul Fultz II committed
89
90
91
92
93
94
95
96
    }
    return curr_ins;
}

instruction_ref onnx_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                    instruction_ref arg0,
                                                                    instruction_ref arg1) const
{
97
    return add_common_op(*mod, make_op(op_name), {arg0, arg1});
Paul Fultz II's avatar
Paul Fultz II committed
98
99
100
101
102
103
}

instruction_ref
onnx_parser::node_info::add_instruction(const operation& op,
                                        const std::vector<instruction_ref>& args) const
{
Shucai Xiao's avatar
Shucai Xiao committed
104
    return mod->add_instruction(op, args);
Paul Fultz II's avatar
Paul Fultz II committed
105
106
}

Shucai Xiao's avatar
Shucai Xiao committed
107
108
109
110
111
112
113
instruction_ref onnx_parser::node_info::add_instruction(const operation& op,
                                                        const std::vector<instruction_ref>& args,
                                                        const std::vector<module_ref>& mods) const
{
    return mod->add_instruction(op, args, mods);
}

Paul Fultz II's avatar
Paul Fultz II committed
114
115
instruction_ref onnx_parser::node_info::add_literal(literal l) const
{
Shucai Xiao's avatar
Shucai Xiao committed
116
    return mod->add_literal(std::move(l));
Paul Fultz II's avatar
Paul Fultz II committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
}

onnx_parser::onnx_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

operation onnx_parser::load(const std::string& name, const node_info& info) const
{
    auto op = make_op(name);
    auto v  = op.to_value();
    for(auto&& x : v)
    {
        if(info.attributes.count(x.get_key()) == 0)
            continue;
        literal s = parse_value(info.attributes.at(x.get_key()));
        if(x.is_array())
        {
            std::vector<value> values;
            s.visit([&](auto y) {
                std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                    return value(z);
                });
            });
            x = values;
        }
        else
        {
            s.visit([&](auto y) { x = y.front(); });
        }
    }
    op.from_value(v);
    return op;
}

Shucai Xiao's avatar
Shucai Xiao committed
154
void onnx_parser::parse_undefined(module* mod, const std::string& name)
Paul Fultz II's avatar
Paul Fultz II committed
155
156
157
{
    if(!contains(instructions, name))
    {
Shucai Xiao's avatar
Shucai Xiao committed
158
        auto ins           = mod->add_instruction(make_op("undefined"));
Paul Fultz II's avatar
Paul Fultz II committed
159
160
161
162
163
164
        instructions[name] = ins;
    }
}

void onnx_parser::parse_from(std::istream& is, std::string name)
{
Shucai Xiao's avatar
Shucai Xiao committed
165
    auto* mm         = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
166
167
168
169
170
171
172
173
    this->filename   = std::move(name);
    auto parent_path = fs::path(this->filename).parent_path();
    if(not parent_path.empty())
        this->path = parent_path;

    onnx::ModelProto model;
    if(model.ParseFromIstream(&is))
    {
Shucai Xiao's avatar
Shucai Xiao committed
174
175
176
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
177
178
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
179
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
180
181
182
183
        }
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
184
        MIGRAPHX_THROW("PARSE_FROM: Failed reading onnx file: " + this->filename);
Paul Fultz II's avatar
Paul Fultz II committed
185
186
187
    }
}

188
void onnx_parser::parse_from(const void* data, int size)
Paul Fultz II's avatar
Paul Fultz II committed
189
{
Shucai Xiao's avatar
Shucai Xiao committed
190
    auto* mm = prog.get_main_module();
Paul Fultz II's avatar
Paul Fultz II committed
191
192
193
    onnx::ModelProto model;
    if(model.ParseFromArray(data, size))
    {
Shucai Xiao's avatar
Shucai Xiao committed
194
195
196
        auto version  = get_opset_version(model);
        opset_version = (version == -1) ? opset_version : version;

Paul Fultz II's avatar
Paul Fultz II committed
197
198
        if(model.has_graph())
        {
Shucai Xiao's avatar
Shucai Xiao committed
199
            this->parse_graph(mm, model.graph());
Paul Fultz II's avatar
Paul Fultz II committed
200
201
202
203
204
205
206
207
        }
    }
    else
    {
        MIGRAPHX_THROW("Failed reading onnx file.");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
{
    const auto& opset_import = model.opset_import();
    int64_t version          = -1;
    for(const auto& opset : opset_import)
    {
        if(opset.has_version())
        {
            version = std::max(version, opset.version());
        }
    }

    return version;
}

Shucai Xiao's avatar
Shucai Xiao committed
223
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
Paul Fultz II's avatar
Paul Fultz II committed
224
{
Shucai Xiao's avatar
Shucai Xiao committed
225
    std::unordered_map<std::string, instruction_ref> mod_insts;
Paul Fultz II's avatar
Paul Fultz II committed
226
227
    for(auto&& f : graph.initializer())
    {
Shucai Xiao's avatar
Shucai Xiao committed
228
229
        // backup instructions in parent mod
        mod_insts[f.name()] = mod->add_literal(parse_tensor(f));
Paul Fultz II's avatar
Paul Fultz II committed
230
231
232
233
234
235
    }

    for(auto&& input : graph.input())
    {
        const std::string& name = input.name();
        // input not in initializer_data, so it is a real input
Shucai Xiao's avatar
Shucai Xiao committed
236
        if(!contains(mod_insts, name))
Paul Fultz II's avatar
Paul Fultz II committed
237
        {
Shucai Xiao's avatar
Shucai Xiao committed
238
239
240
241
242
243
244
245
246
247
            // ONNX specification does not specify hwo to deal with the
            // scenario that a nested subgraph contains a parameter with the
            // name existed in its parent graph.
            // In the current implementation, MIGraphX throws an exception for that.
            if(contains(instructions, name))
            {
                MIGRAPHX_THROW("module \"" + mod->name() + "\" has parameter name \"" + name +
                               "\" existing in parent graph!");
            }

248
            std::vector<int> dims;
Paul Fultz II's avatar
Paul Fultz II committed
249
250
251
252
253
            if(map_input_dims.count(name) > 0)
            {
                dims = map_input_dims.at(name);
            }

Shucai Xiao's avatar
Shucai Xiao committed
254
255
            shape s         = parse_type(input.type(), dims);
            mod_insts[name] = mod->add_parameter(name, s);
Paul Fultz II's avatar
Paul Fultz II committed
256
257
258
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
259
260
    std::copy(mod_insts.begin(), mod_insts.end(), std::inserter(instructions, instructions.end()));

Paul Fultz II's avatar
Paul Fultz II committed
261
262
263
264
265
266
267
    for(auto&& node : graph.node())
    {
        std::vector<instruction_ref> args;
        for(auto&& input : node.input())
        {
            if(input.empty())
            {
Shucai Xiao's avatar
Shucai Xiao committed
268
                this->parse_undefined(mod, input);
Paul Fultz II's avatar
Paul Fultz II committed
269
270
271
272
273
274
275
276
277
278
            }
            if(instructions.count(input) == 0)
            {
                MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                               "\" is unavailable due to unordered nodes!");
            }
            args.push_back(instructions.at(input));
        }

        std::vector<instruction_ref> result;
279
        int output_num = static_cast<int>(node.output().size());
Paul Fultz II's avatar
Paul Fultz II committed
280
281
282
        if(ops.count(node.op_type()) == 0)
        {
            if(skip_unknown_operators)
Shucai Xiao's avatar
Shucai Xiao committed
283
                result.push_back(mod->add_instruction(op::unknown{node.op_type()}, args));
Paul Fultz II's avatar
Paul Fultz II committed
284
285
286
287
288
            else
                MIGRAPHX_THROW("Unknown operator: " + node.op_type());
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
289
290
291
            std::string node_name = node.op_type() + "_" + std::to_string(mod->size());
            result                = ops[node.op_type()](
                *this, {get_attributes(node), output_num, node_name, mod}, args);
Paul Fultz II's avatar
Paul Fultz II committed
292
293
        }

294
        output_num = std::min<int>(output_num, result.size());
Paul Fultz II's avatar
Paul Fultz II committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        std::transform(node.output().begin(),
                       node.output().begin() + output_num,
                       result.begin(),
                       std::inserter(instructions, instructions.end()),
                       [](auto&& x, auto&& y) { return std::make_pair(x, y); });
    }

    // Find instructions corresponding to the output
    auto prog_output = graph.output();
    std::vector<std::string> all_output_names;
    std::vector<std::string> prog_output_names;
    std::transform(prog_output.begin(),
                   prog_output.end(),
                   std::back_inserter(all_output_names),
                   [](auto& node) { return node.name(); });
    std::copy_if(
        all_output_names.begin(),
        all_output_names.end(),
        std::back_inserter(prog_output_names),
        [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

    std::vector<instruction_ref> output_ins;
    std::transform(prog_output_names.begin(),
                   prog_output_names.end(),
                   std::back_inserter(output_ins),
                   [&](const auto& name) { return instructions[name]; });

    // add the return instuction
Shucai Xiao's avatar
Shucai Xiao committed
323
    mod->add_return(output_ins);
Shucai Xiao's avatar
Shucai Xiao committed
324
325
326

    // remove instructions added in this mod
    erase_if(instructions, [&](auto&& p) { return mod->has_instruction(p.second); });
Paul Fultz II's avatar
Paul Fultz II committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
}

literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
{
    switch(attr.type())
    {
    case onnx::AttributeProto::FLOAT: return literal{attr.f()};
    case onnx::AttributeProto::INT: return literal{attr.i()};
    case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
    case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
    case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
    case onnx::AttributeProto::UNDEFINED:
    case onnx::AttributeProto::GRAPH:
    case onnx::AttributeProto::STRING:
    case onnx::AttributeProto::STRINGS:
    case onnx::AttributeProto::TENSORS:
    case onnx::AttributeProto::SPARSE_TENSOR:
    case onnx::AttributeProto::SPARSE_TENSORS:
    case onnx::AttributeProto::GRAPHS: return {};
    }
    MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
}

literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
352
    std::vector<int> dims(t.dims().begin(), t.dims().end());
Paul Fultz II's avatar
Paul Fultz II committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    if(not t.external_data().empty())
    {
        const std::string& data_file = t.external_data().at(0).value();
        auto raw_buffer              = read_buffer(path + "/" + data_file);
        std::string s(raw_buffer.begin(), raw_buffer.end());
        auto type = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }
    if(t.has_raw_data())
    {
        const std::string& s = t.raw_data();
        auto type            = get_type(t.data_type());
        return create_literal(type, dims, s.data());
    }

    switch(t.data_type())
    {
    case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
    case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
    case onnx::TensorProto::UINT8: return create_literal(shape::uint8_type, dims, t.int32_data());
    case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, t.int32_data());
    case onnx::TensorProto::UINT16: return create_literal(shape::uint16_type, dims, t.int32_data());
    case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, t.int32_data());
    case onnx::TensorProto::UINT32:
        return create_literal(shape::uint32_type, dims, t.uint64_data());
    case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, t.int64_data());
    case onnx::TensorProto::UINT64:
        return create_literal(shape::uint64_type, dims, t.uint64_data());
    case onnx::TensorProto::FLOAT16:
    {
        std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case onnx::TensorProto::DOUBLE:
        return create_literal(shape::double_type, dims, t.double_data());
    case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, t.float_data());
    case onnx::TensorProto::UNDEFINED:
    case onnx::TensorProto::STRING:
    case onnx::TensorProto::COMPLEX64:
    case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
Shucai Xiao's avatar
Shucai Xiao committed
401
shape onnx_parser::parse_type(const onnx::TypeProto& t, const std::vector<int>& input_dims) const
Paul Fultz II's avatar
Paul Fultz II committed
402
403
404
405
406
407
408
{
    shape::type_t shape_type = get_type(t.tensor_type().elem_type());
    if(!input_dims.empty())
    {
        return {shape_type, input_dims};
    }

409
    std::vector<int> dims;
Paul Fultz II's avatar
Paul Fultz II committed
410
    auto&& tensor_dims = t.tensor_type().shape().dim();
Shucai Xiao's avatar
Shucai Xiao committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    std::transform(
        tensor_dims.begin(), tensor_dims.end(), std::back_inserter(dims), [&](auto&& d) -> int {
            if(d.has_dim_value())
            {
                if(static_cast<int>(d.dim_value()) <= 0)
                {
                    return default_dim_value;
                }
                return d.dim_value();
            }
            else
            {
                return default_dim_value;
            }
        });
Paul Fultz II's avatar
Paul Fultz II committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

    if(dims.empty())
        return {shape_type};

    return {shape_type, dims};
}

shape::type_t get_type(int dtype)
{
    switch(dtype)
    {
    case 1: return shape::float_type;
    case 2: return shape::uint8_type;
    case 3: return shape::int8_type;
    case 4: return shape::uint16_type;
    case 5: return shape::int16_type;
    case 6: return shape::int32_type;
    case 7: return shape::int64_type;
    case 9: return shape::bool_type;
    case 10: return shape::half_type;
    case 11: return shape::double_type;
    case 12: return shape::uint32_type;
    case 13: return shape::uint64_type;
    default: { MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
    }
    }
}

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx